在酸的辅助下加速和控制 N-羧基酸酐的聚合反应

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xingliang Liu, Jing Huang, Jiaqi Wang, Haonan Sheng, Zhen Yuan, Wanying Wang, Wenbin Li, Ziyuan Song, Jianjun Cheng
{"title":"在酸的辅助下加速和控制 N-羧基酸酐的聚合反应","authors":"Xingliang Liu, Jing Huang, Jiaqi Wang, Haonan Sheng, Zhen Yuan, Wanying Wang, Wenbin Li, Ziyuan Song, Jianjun Cheng","doi":"10.31635/ccschem.024.202403954","DOIUrl":null,"url":null,"abstract":"It has been widely accepted that acidic species, such as HCl, inhibit the polymerization process of <i>N</i>-carboxyanhydrides (NCAs), which have to be removed to guarantee the successful synthesis of polypeptides. Herein, we showed that the impact of organic acids on NCA polymerization was dependent on their pKa values in dichloromethane. While stronger acids like trifluoroacetic acids completely blocked the chain propagation as expected, weaker acids such as acetic acids accelerated the polymerization rate instead. The addition of acids not only protonated the propagating amino groups but also activated NCA monomers, whose balance determined the accelerating or inhibitory effect. Additionally, the acid-assisted polymerization exhibited one-stage kinetics that differed from conventional cooperative covalent polymerizations, resulting in excellent control over molecular weights even with an accelerating rate. The pKa-dependence inspired us to turn the inhibitory acids into accelerating acids on demand, promoting the controlled polymerization from non-purified NCA monomers. This work highlights the possibility to change the conventional understanding of an activator /inhibitor by altering reaction conditions, which not only sheds light on the design of new accelerating strategy, but also offers a practical strategy to prepare polypeptide materials in an efficient and controlled manner.\n<figure><img alt=\"\" data-lg-src=\"/cms/asset/15caeb88-62e5-48bd-8675-a3267b643c82/keyimage.jpg\" data-src=\"/cms/asset/dfec418b-12d4-42f1-9b39-0530976ebf8d/keyimage.jpg\" src=\"/specs/ux3/releasedAssets/images/loader-7e60691fbe777356dc81ff6d223a82a6.gif\"/><ul>\n<li>Download figure</li>\n<li>Download PowerPoint</li>\n</ul>\n</figure>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"53 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated and controlled polymerization of N-carboxyanhydrides assisted by acids\",\"authors\":\"Xingliang Liu, Jing Huang, Jiaqi Wang, Haonan Sheng, Zhen Yuan, Wanying Wang, Wenbin Li, Ziyuan Song, Jianjun Cheng\",\"doi\":\"10.31635/ccschem.024.202403954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been widely accepted that acidic species, such as HCl, inhibit the polymerization process of <i>N</i>-carboxyanhydrides (NCAs), which have to be removed to guarantee the successful synthesis of polypeptides. Herein, we showed that the impact of organic acids on NCA polymerization was dependent on their pKa values in dichloromethane. While stronger acids like trifluoroacetic acids completely blocked the chain propagation as expected, weaker acids such as acetic acids accelerated the polymerization rate instead. The addition of acids not only protonated the propagating amino groups but also activated NCA monomers, whose balance determined the accelerating or inhibitory effect. Additionally, the acid-assisted polymerization exhibited one-stage kinetics that differed from conventional cooperative covalent polymerizations, resulting in excellent control over molecular weights even with an accelerating rate. The pKa-dependence inspired us to turn the inhibitory acids into accelerating acids on demand, promoting the controlled polymerization from non-purified NCA monomers. This work highlights the possibility to change the conventional understanding of an activator /inhibitor by altering reaction conditions, which not only sheds light on the design of new accelerating strategy, but also offers a practical strategy to prepare polypeptide materials in an efficient and controlled manner.\\n<figure><img alt=\\\"\\\" data-lg-src=\\\"/cms/asset/15caeb88-62e5-48bd-8675-a3267b643c82/keyimage.jpg\\\" data-src=\\\"/cms/asset/dfec418b-12d4-42f1-9b39-0530976ebf8d/keyimage.jpg\\\" src=\\\"/specs/ux3/releasedAssets/images/loader-7e60691fbe777356dc81ff6d223a82a6.gif\\\"/><ul>\\n<li>Download figure</li>\\n<li>Download PowerPoint</li>\\n</ul>\\n</figure>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202403954\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202403954","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,盐酸等酸性物质会抑制 N-羧基酸酐(NCA)的聚合过程,必须去除这些酸性物质才能保证多肽的成功合成。在这里,我们发现有机酸对 NCA 聚合的影响取决于它们在二氯甲烷中的 pKa 值。强酸(如三氟乙酸)会完全阻断链的扩展,而弱酸(如乙酸)反而会加快聚合速度。酸的加入不仅质子化了传播的氨基,还激活了 NCA 单体,其平衡决定了加速或抑制作用。此外,酸辅助聚合表现出不同于传统合作共价聚合的单级动力学,因此即使在加速聚合的情况下,也能很好地控制分子量。pKa 依赖性启发我们按需将抑制性酸转化为促进性酸,从而促进未纯化 NCA 单体的受控聚合。这项工作强调了通过改变反应条件来改变对活化剂/抑制剂的传统理解的可能性,这不仅为设计新的加速策略提供了启示,还为以高效、可控的方式制备多肽材料提供了一种实用的策略。 下载图表下载 PowerPoint
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated and controlled polymerization of N-carboxyanhydrides assisted by acids
It has been widely accepted that acidic species, such as HCl, inhibit the polymerization process of N-carboxyanhydrides (NCAs), which have to be removed to guarantee the successful synthesis of polypeptides. Herein, we showed that the impact of organic acids on NCA polymerization was dependent on their pKa values in dichloromethane. While stronger acids like trifluoroacetic acids completely blocked the chain propagation as expected, weaker acids such as acetic acids accelerated the polymerization rate instead. The addition of acids not only protonated the propagating amino groups but also activated NCA monomers, whose balance determined the accelerating or inhibitory effect. Additionally, the acid-assisted polymerization exhibited one-stage kinetics that differed from conventional cooperative covalent polymerizations, resulting in excellent control over molecular weights even with an accelerating rate. The pKa-dependence inspired us to turn the inhibitory acids into accelerating acids on demand, promoting the controlled polymerization from non-purified NCA monomers. This work highlights the possibility to change the conventional understanding of an activator /inhibitor by altering reaction conditions, which not only sheds light on the design of new accelerating strategy, but also offers a practical strategy to prepare polypeptide materials in an efficient and controlled manner.
  • Download figure
  • Download PowerPoint
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CCS Chemistry
CCS Chemistry Chemistry-General Chemistry
CiteScore
13.60
自引率
13.40%
发文量
475
审稿时长
10 weeks
期刊介绍: CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信