{"title":"专为半氢化设计","authors":"Haisong Feng, Xin Zhang","doi":"10.1038/s41929-024-01146-z","DOIUrl":null,"url":null,"abstract":"Ethylene, despite being a cornerstone of the modern petrochemical industry, continues to pose challenges during its production. Now, a dual single-atom catalyst design emerges as a remarkable solution for the efficient semi-hydrogenation of acetylene.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailored for semi-hydrogenation\",\"authors\":\"Haisong Feng, Xin Zhang\",\"doi\":\"10.1038/s41929-024-01146-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethylene, despite being a cornerstone of the modern petrochemical industry, continues to pose challenges during its production. Now, a dual single-atom catalyst design emerges as a remarkable solution for the efficient semi-hydrogenation of acetylene.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01146-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01146-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ethylene, despite being a cornerstone of the modern petrochemical industry, continues to pose challenges during its production. Now, a dual single-atom catalyst design emerges as a remarkable solution for the efficient semi-hydrogenation of acetylene.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.