群、树和球的互嵌性

IF 1.2 1区 数学 Q1 MATHEMATICS
Claude Tardif
{"title":"群、树和球的互嵌性","authors":"Claude Tardif","doi":"10.1016/j.jctb.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Two subsets in a group are called <em>twins</em> if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></msub></math></span>, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where the embeddings considered are isometries of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that there exist maximal families of twin sets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of any finite cardinality.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"168 ","pages":"Pages 1-10"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutual embeddability in groups, trees, and spheres\",\"authors\":\"Claude Tardif\",\"doi\":\"10.1016/j.jctb.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two subsets in a group are called <em>twins</em> if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></msub></math></span>, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where the embeddings considered are isometries of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that there exist maximal families of twin sets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of any finite cardinality.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"168 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000273\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000273","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果一个群中的两个子集都包含在另一个子集的左平移中,而这两个子集本身又互不平移,那么这两个子集就被称为孪生集。我们证明,在自由群 F{α,β} 中,存在任意有限心数的最大孪生族。这一结果被用来证明,在树的嵌入中,存在任意有限心数的最大孪生树族。这些都是 "树替代 "猜想的反例,是对卡洛、拉弗兰梅、塔特诺和伍德罗发表的第一个反例的补充。我们还研究了球面 S2 中的孪生集,其中考虑的嵌入是 S2 的等分线。我们证明在 S2 中存在任意有限心数的最大孪生集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual embeddability in groups, trees, and spheres

Two subsets in a group are called twins if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group F{α,β}, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere S2, where the embeddings considered are isometries of S2. We show that there exist maximal families of twin sets in S2 of any finite cardinality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信