群、树和球的互嵌性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Claude Tardif
{"title":"群、树和球的互嵌性","authors":"Claude Tardif","doi":"10.1016/j.jctb.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Two subsets in a group are called <em>twins</em> if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></msub></math></span>, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where the embeddings considered are isometries of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that there exist maximal families of twin sets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of any finite cardinality.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutual embeddability in groups, trees, and spheres\",\"authors\":\"Claude Tardif\",\"doi\":\"10.1016/j.jctb.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two subsets in a group are called <em>twins</em> if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group <span><math><msub><mrow><mi>F</mi></mrow><mrow><mo>{</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>}</mo></mrow></msub></math></span>, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, where the embeddings considered are isometries of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that there exist maximal families of twin sets in <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of any finite cardinality.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000273\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000273","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果一个群中的两个子集都包含在另一个子集的左平移中,而这两个子集本身又互不平移,那么这两个子集就被称为孪生集。我们证明,在自由群 F{α,β} 中,存在任意有限心数的最大孪生族。这一结果被用来证明,在树的嵌入中,存在任意有限心数的最大孪生树族。这些都是 "树替代 "猜想的反例,是对卡洛、拉弗兰梅、塔特诺和伍德罗发表的第一个反例的补充。我们还研究了球面 S2 中的孪生集,其中考虑的嵌入是 S2 的等分线。我们证明在 S2 中存在任意有限心数的最大孪生集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mutual embeddability in groups, trees, and spheres

Two subsets in a group are called twins if each is contained in a left translate of the other, though the two sets themselves are not translates of each other. We show that in the free group F{α,β}, there exist maximal families of twins of any finite cardinality. This result is used to show that in the context of embeddings of trees, there exist maximal families of twin trees of any finite cardinality. These are counterexamples to the “tree alternative” conjecture, which supplement the first counterexamples published by Kalow, Laflamme, Tateno, and Woodrow. We also investigate twin sets in the sphere S2, where the embeddings considered are isometries of S2. We show that there exist maximal families of twin sets in S2 of any finite cardinality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信