相位瞬态消除的帧变化技术

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Andrew Stasiuk , Pai Peng , Garrett Heller , Paola Cappellaro
{"title":"相位瞬态消除的帧变化技术","authors":"Andrew Stasiuk ,&nbsp;Pai Peng ,&nbsp;Garrett Heller ,&nbsp;Paola Cappellaro","doi":"10.1016/j.jmr.2024.107688","DOIUrl":null,"url":null,"abstract":"<div><p>The precise control of complex quantum mechanical systems can unlock applications ranging from quantum simulation to quantum computation. Controlling strongly interacting many-body systems often relies on Floquet Hamiltonian engineering that is achieved by fast switching between Hamiltonian primitives via external control. For example, in our solid-state NMR system, we perform quantum simulation by modulating the natural Hamiltonian with control pulses. As the Floquet heating errors scale with the interpulse delay, <span><math><mrow><mi>δ</mi><mi>t</mi></mrow></math></span>, it is favorable to keep <span><math><mrow><mi>δ</mi><mi>t</mi></mrow></math></span> as short as possible, forcing our control pulses to be short duration and high power. Additionally, high-power pulses help to minimize undesirable evolution from occurring during the duration of the pulse. However, such pulses introduce an appreciable phase-transient control error, a form of unitary error. In this work, we detail our ability to diagnose the error, calibrate its magnitude, and correct it for <span><math><mrow><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>-pulses of arbitrary phase. We demonstrate the improvements gained by correcting for the phase transient error, using a method which we call the “frame-change technique”, in a variety of experimental settings of interest. Given that the correction mechanism adds no real control overhead, we recommend that any resonance probe be checked for these phase transient control errors, and correct them using the frame-change technique.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107688"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame change technique for phase transient cancellation\",\"authors\":\"Andrew Stasiuk ,&nbsp;Pai Peng ,&nbsp;Garrett Heller ,&nbsp;Paola Cappellaro\",\"doi\":\"10.1016/j.jmr.2024.107688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precise control of complex quantum mechanical systems can unlock applications ranging from quantum simulation to quantum computation. Controlling strongly interacting many-body systems often relies on Floquet Hamiltonian engineering that is achieved by fast switching between Hamiltonian primitives via external control. For example, in our solid-state NMR system, we perform quantum simulation by modulating the natural Hamiltonian with control pulses. As the Floquet heating errors scale with the interpulse delay, <span><math><mrow><mi>δ</mi><mi>t</mi></mrow></math></span>, it is favorable to keep <span><math><mrow><mi>δ</mi><mi>t</mi></mrow></math></span> as short as possible, forcing our control pulses to be short duration and high power. Additionally, high-power pulses help to minimize undesirable evolution from occurring during the duration of the pulse. However, such pulses introduce an appreciable phase-transient control error, a form of unitary error. In this work, we detail our ability to diagnose the error, calibrate its magnitude, and correct it for <span><math><mrow><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>-pulses of arbitrary phase. We demonstrate the improvements gained by correcting for the phase transient error, using a method which we call the “frame-change technique”, in a variety of experimental settings of interest. Given that the correction mechanism adds no real control overhead, we recommend that any resonance probe be checked for these phase transient control errors, and correct them using the frame-change technique.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"362 \",\"pages\":\"Article 107688\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000727\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000727","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

对复杂量子力学系统的精确控制可以开启从量子模拟到量子计算的各种应用。强相互作用多体系统的控制通常依赖于弗洛克哈密顿工程,通过外部控制在哈密顿基元之间快速切换来实现。例如,在我们的固态核磁共振系统中,我们通过控制脉冲调制自然哈密顿来进行量子模拟。由于 Floquet 加热误差与脉冲间延迟 δt 成比例关系,因此保持 δt 越短越好,这就迫使我们的控制脉冲必须持续时间短、功率大。此外,高功率脉冲有助于最大限度地减少脉冲持续时间内发生的不良演变。然而,这种脉冲会带来明显的相位瞬态控制误差,这是一种单元误差。在这项工作中,我们详细介绍了诊断误差、校准误差大小并对任意相位的 π/2 脉冲进行修正的能力。我们使用一种被称为 "帧变化技术 "的方法,在各种相关实验环境中演示了通过校正相位瞬态误差所获得的改进。鉴于校正机制不会增加实际的控制开销,我们建议对任何共振探头进行检查,以发现这些相位瞬态控制误差,并使用 "帧变化技术 "对其进行校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Frame change technique for phase transient cancellation

Frame change technique for phase transient cancellation

The precise control of complex quantum mechanical systems can unlock applications ranging from quantum simulation to quantum computation. Controlling strongly interacting many-body systems often relies on Floquet Hamiltonian engineering that is achieved by fast switching between Hamiltonian primitives via external control. For example, in our solid-state NMR system, we perform quantum simulation by modulating the natural Hamiltonian with control pulses. As the Floquet heating errors scale with the interpulse delay, δt, it is favorable to keep δt as short as possible, forcing our control pulses to be short duration and high power. Additionally, high-power pulses help to minimize undesirable evolution from occurring during the duration of the pulse. However, such pulses introduce an appreciable phase-transient control error, a form of unitary error. In this work, we detail our ability to diagnose the error, calibrate its magnitude, and correct it for π/2-pulses of arbitrary phase. We demonstrate the improvements gained by correcting for the phase transient error, using a method which we call the “frame-change technique”, in a variety of experimental settings of interest. Given that the correction mechanism adds no real control overhead, we recommend that any resonance probe be checked for these phase transient control errors, and correct them using the frame-change technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信