纳什均衡数的奇异性:多项式报酬函数的情况

IF 1 3区 经济学 Q3 ECONOMICS
Philippe Bich , Julien Fixary
{"title":"纳什均衡数的奇异性:多项式报酬函数的情况","authors":"Philippe Bich ,&nbsp;Julien Fixary","doi":"10.1016/j.geb.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>In 1971, <span>Wilson (1971)</span> proved that “almost all” finite games have an odd number of mixed Nash equilibria. Since then, several other proofs have been given, but always for mixed extensions of finite games. In this paper, we present a new oddness theorem for large classes of polynomial payoff functions and semi-algebraic sets of strategies. Additionally, we provide some applications to recent models of games on networks such that Patacchini-Zenou's model about juvenile delinquency and conformism (<span>Patacchini and Zenou, 2012</span>), Calvó-Armengol-Patacchini-Zenou's model about social networks in education (<span>Calvó-Armengol et al., 2009</span>), Konig-Liu-Zenou's model about R&amp;D networks (<span>König et al., 2019</span>), Helsley-Zenou's model about social networks and interactions in cities (<span>Helsley and Zenou, 2014</span>).</p></div>","PeriodicalId":48291,"journal":{"name":"Games and Economic Behavior","volume":"145 ","pages":"Pages 510-525"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oddness of the number of Nash equilibria: The case of polynomial payoff functions\",\"authors\":\"Philippe Bich ,&nbsp;Julien Fixary\",\"doi\":\"10.1016/j.geb.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 1971, <span>Wilson (1971)</span> proved that “almost all” finite games have an odd number of mixed Nash equilibria. Since then, several other proofs have been given, but always for mixed extensions of finite games. In this paper, we present a new oddness theorem for large classes of polynomial payoff functions and semi-algebraic sets of strategies. Additionally, we provide some applications to recent models of games on networks such that Patacchini-Zenou's model about juvenile delinquency and conformism (<span>Patacchini and Zenou, 2012</span>), Calvó-Armengol-Patacchini-Zenou's model about social networks in education (<span>Calvó-Armengol et al., 2009</span>), Konig-Liu-Zenou's model about R&amp;D networks (<span>König et al., 2019</span>), Helsley-Zenou's model about social networks and interactions in cities (<span>Helsley and Zenou, 2014</span>).</p></div>\",\"PeriodicalId\":48291,\"journal\":{\"name\":\"Games and Economic Behavior\",\"volume\":\"145 \",\"pages\":\"Pages 510-525\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Games and Economic Behavior\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089982562400054X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Games and Economic Behavior","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089982562400054X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

1971 年,威尔逊(Wilson,1971 年)证明了 "几乎所有 "有限博弈都有奇数个混合纳什均衡。从那时起,又有人给出了其他一些证明,但都是针对有限博弈的混合扩展。在本文中,我们针对多项式报酬函数和半代数策略集的大类提出了一个新的奇数定理。此外,我们还提供了一些近期网络博弈模型的应用,如 Patacchini-Zenou 关于青少年犯罪和守规的模型(Patacchini 和 Zenou,2012 年)、Calvó-Armengol-Patacchini-Zenou 关于教育社交网络的模型(Calvó-Armengol et al、2009)、Konig-Liu-Zenou 的研发网络模型(König et al.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oddness of the number of Nash equilibria: The case of polynomial payoff functions

In 1971, Wilson (1971) proved that “almost all” finite games have an odd number of mixed Nash equilibria. Since then, several other proofs have been given, but always for mixed extensions of finite games. In this paper, we present a new oddness theorem for large classes of polynomial payoff functions and semi-algebraic sets of strategies. Additionally, we provide some applications to recent models of games on networks such that Patacchini-Zenou's model about juvenile delinquency and conformism (Patacchini and Zenou, 2012), Calvó-Armengol-Patacchini-Zenou's model about social networks in education (Calvó-Armengol et al., 2009), Konig-Liu-Zenou's model about R&D networks (König et al., 2019), Helsley-Zenou's model about social networks and interactions in cities (Helsley and Zenou, 2014).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
9.10%
发文量
148
期刊介绍: Games and Economic Behavior facilitates cross-fertilization between theories and applications of game theoretic reasoning. It consistently attracts the best quality and most creative papers in interdisciplinary studies within the social, biological, and mathematical sciences. Most readers recognize it as the leading journal in game theory. Research Areas Include: • Game theory • Economics • Political science • Biology • Computer science • Mathematics • Psychology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信