Eric Goles , Pedro Montealegre , Martín Ríos-Wilson , Guillaume Theyssier
{"title":"论冻结动力学的参数化复杂性","authors":"Eric Goles , Pedro Montealegre , Martín Ríos-Wilson , Guillaume Theyssier","doi":"10.1016/j.aam.2024.102706","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we establish how alphabet size, treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general decision problem, called <span>Specification Checking Problem</span>, that captures many classical decision problems such as prediction, nilpotency, predecessor, asynchronous reachability.</p><p>Then, we present a fast-parallel algorithm that solves the general model checking problem when the three parameters are bounded, hence showing that the problem is in NC. Moreover, we show that the problem is in XP on the parameters tree-width and maximum degree.</p><p>Finally, we show that these problems are hard from two different perspectives. First, the general problem is W[2]-hard when taking either treewidth or alphabet as single parameter and fixing the others. Second, the classical problems are hard in their respective classes when restricted to families of graph with sufficiently large treewidth.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the parameterized complexity of freezing dynamics\",\"authors\":\"Eric Goles , Pedro Montealegre , Martín Ríos-Wilson , Guillaume Theyssier\",\"doi\":\"10.1016/j.aam.2024.102706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we establish how alphabet size, treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general decision problem, called <span>Specification Checking Problem</span>, that captures many classical decision problems such as prediction, nilpotency, predecessor, asynchronous reachability.</p><p>Then, we present a fast-parallel algorithm that solves the general model checking problem when the three parameters are bounded, hence showing that the problem is in NC. Moreover, we show that the problem is in XP on the parameters tree-width and maximum degree.</p><p>Finally, we show that these problems are hard from two different perspectives. First, the general problem is W[2]-hard when taking either treewidth or alphabet as single parameter and fixing the others. Second, the classical problems are hard in their respective classes when restricted to families of graph with sufficiently large treewidth.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582400037X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400037X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the parameterized complexity of freezing dynamics
In this paper we establish how alphabet size, treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general decision problem, called Specification Checking Problem, that captures many classical decision problems such as prediction, nilpotency, predecessor, asynchronous reachability.
Then, we present a fast-parallel algorithm that solves the general model checking problem when the three parameters are bounded, hence showing that the problem is in NC. Moreover, we show that the problem is in XP on the parameters tree-width and maximum degree.
Finally, we show that these problems are hard from two different perspectives. First, the general problem is W[2]-hard when taking either treewidth or alphabet as single parameter and fixing the others. Second, the classical problems are hard in their respective classes when restricted to families of graph with sufficiently large treewidth.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.