{"title":"利用低温电子断层扫描技术进行膜生物学原位研究","authors":"Jenny Keller , Rubén Fernández-Busnadiego","doi":"10.1016/j.ceb.2024.102363","DOIUrl":null,"url":null,"abstract":"<div><p>Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology <em>in situ</em>, under basal and pathological conditions.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0955067424000425/pdfft?md5=6cd061af1f2f41caa4ae48498c3e6627&pid=1-s2.0-S0955067424000425-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In situ studies of membrane biology by cryo-electron tomography\",\"authors\":\"Jenny Keller , Rubén Fernández-Busnadiego\",\"doi\":\"10.1016/j.ceb.2024.102363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology <em>in situ</em>, under basal and pathological conditions.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000425/pdfft?md5=6cd061af1f2f41caa4ae48498c3e6627&pid=1-s2.0-S0955067424000425-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067424000425\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
In situ studies of membrane biology by cryo-electron tomography
Cryo-electron tomography (cryo-ET) allows high resolution 3D imaging of biological samples in near-native environments. Thus, cryo-ET has become the method of choice to analyze the unperturbed organization of cellular membranes. Here, we briefly discuss current cryo-ET workflows and their application to study membrane biology in situ, under basal and pathological conditions.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.