通过对 Reddit 评论的大型语言模型分析绘制大不列颠的语义足迹图

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Cillian Berragan , Alex Singleton , Alessia Calafiore , Jeremy Morley
{"title":"通过对 Reddit 评论的大型语言模型分析绘制大不列颠的语义足迹图","authors":"Cillian Berragan ,&nbsp;Alex Singleton ,&nbsp;Alessia Calafiore ,&nbsp;Jeremy Morley","doi":"10.1016/j.compenvurbsys.2024.102121","DOIUrl":null,"url":null,"abstract":"<div><p>Observed regional variation in geotagged social media text is often attributed to dialects, where features in language are assumed to exhibit region-specific properties. While dialects are seen as a key component in defining the identity of regions, there are a multitude of other geographic properties that may be captured within natural language text. In our work, we consider locational mentions that are directly embedded within comments on the social media website Reddit, providing a range of associated semantic information, and enabling deeper representations between locations to be captured. Using a large corpus of geoparsed Reddit comments from UK-related local discussion subreddits, we first extract embedded semantic information using a large language model, aggregated into local authority districts, representing the semantic footprint of these regions. These footprints broadly exhibit spatial autocorrelation, with clusters that conform with the national borders of Wales and Scotland. London, Wales, and Scotland also demonstrate notably different semantic footprints compared with the rest of Great Britain.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"110 ","pages":"Article 102121"},"PeriodicalIF":7.1000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000504/pdfft?md5=ea3c1ade10d7db227e51de2d2551f34b&pid=1-s2.0-S0198971524000504-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mapping Great Britain's semantic footprints through a large language model analysis of Reddit comments\",\"authors\":\"Cillian Berragan ,&nbsp;Alex Singleton ,&nbsp;Alessia Calafiore ,&nbsp;Jeremy Morley\",\"doi\":\"10.1016/j.compenvurbsys.2024.102121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observed regional variation in geotagged social media text is often attributed to dialects, where features in language are assumed to exhibit region-specific properties. While dialects are seen as a key component in defining the identity of regions, there are a multitude of other geographic properties that may be captured within natural language text. In our work, we consider locational mentions that are directly embedded within comments on the social media website Reddit, providing a range of associated semantic information, and enabling deeper representations between locations to be captured. Using a large corpus of geoparsed Reddit comments from UK-related local discussion subreddits, we first extract embedded semantic information using a large language model, aggregated into local authority districts, representing the semantic footprint of these regions. These footprints broadly exhibit spatial autocorrelation, with clusters that conform with the national borders of Wales and Scotland. London, Wales, and Scotland also demonstrate notably different semantic footprints compared with the rest of Great Britain.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":\"110 \",\"pages\":\"Article 102121\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000504/pdfft?md5=ea3c1ade10d7db227e51de2d2551f34b&pid=1-s2.0-S0198971524000504-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000504\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000504","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

在地理标记的社交媒体文本中观察到的区域差异通常归因于方言,而方言中的语言特点被认为具有特定区域的属性。虽然方言被认为是定义地区特征的关键要素,但自然语言文本中还可以捕捉到许多其他地理属性。在我们的工作中,我们考虑了直接嵌入社交媒体网站 Reddit 评论中的地点提及,提供了一系列相关的语义信息,并能够捕捉地点之间更深层次的表征。我们首先使用一个大型语言模型提取嵌入的语义信息,并将其汇总到地方当局地区,代表这些地区的语义足迹。这些足迹大致呈现出空间自相关性,其集群与威尔士和苏格兰的国界一致。与英国其他地区相比,伦敦、威尔士和苏格兰也表现出明显不同的语义足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping Great Britain's semantic footprints through a large language model analysis of Reddit comments

Observed regional variation in geotagged social media text is often attributed to dialects, where features in language are assumed to exhibit region-specific properties. While dialects are seen as a key component in defining the identity of regions, there are a multitude of other geographic properties that may be captured within natural language text. In our work, we consider locational mentions that are directly embedded within comments on the social media website Reddit, providing a range of associated semantic information, and enabling deeper representations between locations to be captured. Using a large corpus of geoparsed Reddit comments from UK-related local discussion subreddits, we first extract embedded semantic information using a large language model, aggregated into local authority districts, representing the semantic footprint of these regions. These footprints broadly exhibit spatial autocorrelation, with clusters that conform with the national borders of Wales and Scotland. London, Wales, and Scotland also demonstrate notably different semantic footprints compared with the rest of Great Britain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信