广义斐波那契数列中的库伦数和伍德尔数

IF 0.6 3区 数学 Q3 MATHEMATICS
Attila Bérczes , István Pink , Paul Thomas Young
{"title":"广义斐波那契数列中的库伦数和伍德尔数","authors":"Attila Bérczes ,&nbsp;István Pink ,&nbsp;Paul Thomas Young","doi":"10.1016/j.jnt.2024.03.006","DOIUrl":null,"url":null,"abstract":"<div><p>Recently Bilu, Marques and Togbé <span>[4]</span> gave a general effective finiteness result on the equation<span><span><span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span> denotes the <em>k</em>-generalized Fibonacci-sequence and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> the sequence of Cullen numbers, by giving explicit absolute bounds for <span><math><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></math></span>. However, the authors in <span>[4]</span> explained that their bounds were too large to use Dujella-Pethő reduction to completely solve the equation in question. In the present paper, using the bounds established by Bilu, Marques and Togbé in <span>[4]</span> and a different approach based on 2-adic analysis, we completely solve this equation. Further, using the same approach we also solve the corresponding equation for Woodall numbers.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"262 ","pages":"Pages 86-102"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cullen numbers and Woodall numbers in generalized Fibonacci sequences\",\"authors\":\"Attila Bérczes ,&nbsp;István Pink ,&nbsp;Paul Thomas Young\",\"doi\":\"10.1016/j.jnt.2024.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently Bilu, Marques and Togbé <span>[4]</span> gave a general effective finiteness result on the equation<span><span><span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msubsup></math></span> denotes the <em>k</em>-generalized Fibonacci-sequence and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> the sequence of Cullen numbers, by giving explicit absolute bounds for <span><math><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>m</mi></math></span>. However, the authors in <span>[4]</span> explained that their bounds were too large to use Dujella-Pethő reduction to completely solve the equation in question. In the present paper, using the bounds established by Bilu, Marques and Togbé in <span>[4]</span> and a different approach based on 2-adic analysis, we completely solve this equation. Further, using the same approach we also solve the corresponding equation for Woodall numbers.</p></div>\",\"PeriodicalId\":50110,\"journal\":{\"name\":\"Journal of Number Theory\",\"volume\":\"262 \",\"pages\":\"Pages 86-102\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24000799\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24000799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Bilu、Marques 和 Togbé [4] 通过给出 n、k、m 的明确绝对界限,给出了方程 Fn(k)=Cm 的一般有效有限性结果,其中 Fn(k) 表示 k 个广义的斐波纳契数列,Cm 表示库伦数列。然而,[4] 中的作者解释说,他们的界限太大,无法使用 Dujella-Pethő 还原法完全求解相关方程。在本文中,我们利用 Bilu、Marques 和 Togbé 在 [4] 中建立的边界,以及基于 2-adic 分析的不同方法,完全求解了这个方程。此外,我们还利用同样的方法求解了伍德尔数的相应方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cullen numbers and Woodall numbers in generalized Fibonacci sequences

Recently Bilu, Marques and Togbé [4] gave a general effective finiteness result on the equationFn(k)=Cm, where Fn(k) denotes the k-generalized Fibonacci-sequence and Cm the sequence of Cullen numbers, by giving explicit absolute bounds for n,k,m. However, the authors in [4] explained that their bounds were too large to use Dujella-Pethő reduction to completely solve the equation in question. In the present paper, using the bounds established by Bilu, Marques and Togbé in [4] and a different approach based on 2-adic analysis, we completely solve this equation. Further, using the same approach we also solve the corresponding equation for Woodall numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信