Shun-Yi Wang , Wen-Gang Qi , Biao Li , Chen Wang , Fu-Ping Gao
{"title":"潮汐流引起的桩基周围冲刷发展:流速水文图的影响","authors":"Shun-Yi Wang , Wen-Gang Qi , Biao Li , Chen Wang , Fu-Ping Gao","doi":"10.1016/j.coastaleng.2024.104533","DOIUrl":null,"url":null,"abstract":"<div><p>There is a lack of research in the existing literature regarding the scour around foundations for offshore wind turbines under tidal currents, which primarily relies on laboratory experiments with simplified flow velocity hydrographs like square tidal currents. To improve the prediction accuracy of scour development under tidal currents, a series of experiments were conducted to investigate the local scour process around a pile foundation under two typical tidal velocity hydrographs (sinusoidal and square tidal currents) in a specially designed fluid-structure-soil coupling flume. The results demonstrate that reciprocating tidal currents lead to a continuously evolving process of sediment erosion and backfilling around the pile. Although the shapes of the scour holes are similar between sinusoidal and square tidal currents, there are significant differences in the evolving process of the scour depth, presenting a short-platform shape and serrated shape, respectively. A consistent relationship is found between the dimensionless scour depth and the dimensionless effective flow work (DFW) under both tidal and unidirectional currents. An equivalent velocity expression for sinusoidal and square tidal currents is proposed and verified using existing experimental data. Furthermore, an empirical expression for the scour depth reduction coefficient between square tidal currents and unidirectional currents is proposed. These outcomes not only establish a theoretical approach for simplifying tidal currents hydrographs in laboratory experiments, but also provide practical guidance for assessing the tidal currents-induced scour development around pile foundations for in-situ offshore wind turbines.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"191 ","pages":"Article 104533"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tidal currents-induced scour development around pile foundations: Effects of flow velocity hydrograph\",\"authors\":\"Shun-Yi Wang , Wen-Gang Qi , Biao Li , Chen Wang , Fu-Ping Gao\",\"doi\":\"10.1016/j.coastaleng.2024.104533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There is a lack of research in the existing literature regarding the scour around foundations for offshore wind turbines under tidal currents, which primarily relies on laboratory experiments with simplified flow velocity hydrographs like square tidal currents. To improve the prediction accuracy of scour development under tidal currents, a series of experiments were conducted to investigate the local scour process around a pile foundation under two typical tidal velocity hydrographs (sinusoidal and square tidal currents) in a specially designed fluid-structure-soil coupling flume. The results demonstrate that reciprocating tidal currents lead to a continuously evolving process of sediment erosion and backfilling around the pile. Although the shapes of the scour holes are similar between sinusoidal and square tidal currents, there are significant differences in the evolving process of the scour depth, presenting a short-platform shape and serrated shape, respectively. A consistent relationship is found between the dimensionless scour depth and the dimensionless effective flow work (DFW) under both tidal and unidirectional currents. An equivalent velocity expression for sinusoidal and square tidal currents is proposed and verified using existing experimental data. Furthermore, an empirical expression for the scour depth reduction coefficient between square tidal currents and unidirectional currents is proposed. These outcomes not only establish a theoretical approach for simplifying tidal currents hydrographs in laboratory experiments, but also provide practical guidance for assessing the tidal currents-induced scour development around pile foundations for in-situ offshore wind turbines.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"191 \",\"pages\":\"Article 104533\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924000814\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000814","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Tidal currents-induced scour development around pile foundations: Effects of flow velocity hydrograph
There is a lack of research in the existing literature regarding the scour around foundations for offshore wind turbines under tidal currents, which primarily relies on laboratory experiments with simplified flow velocity hydrographs like square tidal currents. To improve the prediction accuracy of scour development under tidal currents, a series of experiments were conducted to investigate the local scour process around a pile foundation under two typical tidal velocity hydrographs (sinusoidal and square tidal currents) in a specially designed fluid-structure-soil coupling flume. The results demonstrate that reciprocating tidal currents lead to a continuously evolving process of sediment erosion and backfilling around the pile. Although the shapes of the scour holes are similar between sinusoidal and square tidal currents, there are significant differences in the evolving process of the scour depth, presenting a short-platform shape and serrated shape, respectively. A consistent relationship is found between the dimensionless scour depth and the dimensionless effective flow work (DFW) under both tidal and unidirectional currents. An equivalent velocity expression for sinusoidal and square tidal currents is proposed and verified using existing experimental data. Furthermore, an empirical expression for the scour depth reduction coefficient between square tidal currents and unidirectional currents is proposed. These outcomes not only establish a theoretical approach for simplifying tidal currents hydrographs in laboratory experiments, but also provide practical guidance for assessing the tidal currents-induced scour development around pile foundations for in-situ offshore wind turbines.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.