架起细菌入侵后生态组装过程与群落稳定性之间的桥梁

Xipeng Liu, Joana Falcão Salles
{"title":"架起细菌入侵后生态组装过程与群落稳定性之间的桥梁","authors":"Xipeng Liu, Joana Falcão Salles","doi":"10.1093/ismejo/wrae066","DOIUrl":null,"url":null,"abstract":"Understanding the link between microbial community stability and assembly processes is crucial in microbial ecology. Here, we investigated whether the impact of biotic disturbances would depend on the processes controlling community assembly. For that, we performed an experiment using soil microcosms in which microbial communities assembled through different processes were invaded by Escherichia coli. We show that the ecological assembly process of the resident community plays a significant role in invader-resident competition, invader survival, and compositional stability of the resident community. Specifically, the resident communities primarily assembled through stochastic processes were more susceptible to invader survival. Besides, E. coli invasion acts as a biotic selection pressure, leading to competition between the invader and resident taxa, suppressing the stochasticity in the resident community. Taken together, this study provides empirical evidence for the interpretation of microbial community assemblage on their (potential) ecosystem functions and services, such as the prevention of pathogen establishment and the pathogenic states of soil microbiomes.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging ecological assembly process and community stability upon bacterial invasions\",\"authors\":\"Xipeng Liu, Joana Falcão Salles\",\"doi\":\"10.1093/ismejo/wrae066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the link between microbial community stability and assembly processes is crucial in microbial ecology. Here, we investigated whether the impact of biotic disturbances would depend on the processes controlling community assembly. For that, we performed an experiment using soil microcosms in which microbial communities assembled through different processes were invaded by Escherichia coli. We show that the ecological assembly process of the resident community plays a significant role in invader-resident competition, invader survival, and compositional stability of the resident community. Specifically, the resident communities primarily assembled through stochastic processes were more susceptible to invader survival. Besides, E. coli invasion acts as a biotic selection pressure, leading to competition between the invader and resident taxa, suppressing the stochasticity in the resident community. Taken together, this study provides empirical evidence for the interpretation of microbial community assemblage on their (potential) ecosystem functions and services, such as the prevention of pathogen establishment and the pathogenic states of soil microbiomes.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解微生物群落稳定性与组装过程之间的联系对微生物生态学至关重要。在这里,我们研究了生物干扰的影响是否取决于控制群落组装的过程。为此,我们使用土壤微生态系统进行了一项实验,在实验中,通过不同过程组装起来的微生物群落被大肠杆菌入侵。实验结果表明,居民群落的生态组装过程对入侵者与居民的竞争、入侵者的生存以及居民群落的组成稳定性起着重要作用。具体来说,主要通过随机过程组装的居民群落更容易受到入侵者生存的影响。此外,大肠杆菌入侵作为一种生物选择压力,导致入侵者与居民类群之间的竞争,抑制了居民群落的随机性。综上所述,这项研究为解释微生物群落组合对生态系统的(潜在)功能和服务(如防止病原体的建立和土壤微生物群的致病状态)提供了经验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bridging ecological assembly process and community stability upon bacterial invasions
Understanding the link between microbial community stability and assembly processes is crucial in microbial ecology. Here, we investigated whether the impact of biotic disturbances would depend on the processes controlling community assembly. For that, we performed an experiment using soil microcosms in which microbial communities assembled through different processes were invaded by Escherichia coli. We show that the ecological assembly process of the resident community plays a significant role in invader-resident competition, invader survival, and compositional stability of the resident community. Specifically, the resident communities primarily assembled through stochastic processes were more susceptible to invader survival. Besides, E. coli invasion acts as a biotic selection pressure, leading to competition between the invader and resident taxa, suppressing the stochasticity in the resident community. Taken together, this study provides empirical evidence for the interpretation of microbial community assemblage on their (potential) ecosystem functions and services, such as the prevention of pathogen establishment and the pathogenic states of soil microbiomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信