常用转基因果蝇 GAL4 驱动系的异位表达

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mattias Winant, Kurt Buhler, Patrick Callaerts
{"title":"常用转基因果蝇 GAL4 驱动系的异位表达","authors":"Mattias Winant,&nbsp;Kurt Buhler,&nbsp;Patrick Callaerts","doi":"10.1002/dvg.23600","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Transgenic tools such as the <i>GAL4/UAS</i> system in <i>Drosophila</i> have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used <i>dilp2-GAL4</i> line in tracheal tissue which significantly impacted growth phenotypes. We realized that few <i>GAL4</i> lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific <i>GAL4</i> lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 <i>GAL4</i> lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.</p>\n </div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines\",\"authors\":\"Mattias Winant,&nbsp;Kurt Buhler,&nbsp;Patrick Callaerts\",\"doi\":\"10.1002/dvg.23600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Transgenic tools such as the <i>GAL4/UAS</i> system in <i>Drosophila</i> have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used <i>dilp2-GAL4</i> line in tracheal tissue which significantly impacted growth phenotypes. We realized that few <i>GAL4</i> lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific <i>GAL4</i> lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 <i>GAL4</i> lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.</p>\\n </div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

果蝇的 GAL4/UAS 系统等转基因工具已被广泛用于诱导基因表达的时空控制变化和一系列转基因的组织特异性表达。我们之前发现,常用的 dilp2-GAL4 株系在气管组织中的表达出乎意料,对生长表型产生了显著影响。我们意识到,很少有 GAL4 株系被彻底表征,特别是考虑到可能对表型读数有重大影响的瞬时活性时。在此,我们对据报道常用于发育、生长、内分泌调节和新陈代谢遗传研究的 12 个组织特异性 GAL4 株系子集进行了进一步鉴定。12 个 GAL4 株系中有 10 个在其他幼虫组织中表现出异位活性,其中 7 个在幼虫气管中具有活性。由于这种异位活性可能导致不依赖于在目标组织中操作的表型,因此建议在仔细分析结果时考虑到这一方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ectopic expression in commonly used transgenic Drosophila GAL4 driver lines

Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信