使用 AutoGluon 对基于 eBPF 的网络故障预测进行评估

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Tianhao Zhu;Jiwon Lee;Bojian Du;Ryoma Kondo;Kentaro Matsuura;Hiroyuki Morikawa;Yoshiaki Narusue
{"title":"使用 AutoGluon 对基于 eBPF 的网络故障预测进行评估","authors":"Tianhao Zhu;Jiwon Lee;Bojian Du;Ryoma Kondo;Kentaro Matsuura;Hiroyuki Morikawa;Yoshiaki Narusue","doi":"10.23919/comex.2023XBL0183","DOIUrl":null,"url":null,"abstract":"This study evaluates an extended Berkeley Packet Filter (eBPF)-based network failure prediction method using Autogluon-Tabular to process the fine-grained network information extracted by eBPF. The extracted information is considered as input features of the proposed model, which aims to predict the subsequent packet loss and determine a network failure event before it causes a huge impact. Supervised learning and semi-supervised learning are both adopted in Autogluon. The accuracy and detection time are evaluated as the main criteria. Simulation results show that F1 scores exceed 0.9 for our proposed method, and the proposed method can achieve prediction for potential failure events within 30 and 40 seconds when symptoms such as packet loss occur.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 5","pages":"159-162"},"PeriodicalIF":0.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471268","citationCount":"0","resultStr":"{\"title\":\"Evaluation on eBPF-Based Network Failure Prediction Using AutoGluon\",\"authors\":\"Tianhao Zhu;Jiwon Lee;Bojian Du;Ryoma Kondo;Kentaro Matsuura;Hiroyuki Morikawa;Yoshiaki Narusue\",\"doi\":\"10.23919/comex.2023XBL0183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates an extended Berkeley Packet Filter (eBPF)-based network failure prediction method using Autogluon-Tabular to process the fine-grained network information extracted by eBPF. The extracted information is considered as input features of the proposed model, which aims to predict the subsequent packet loss and determine a network failure event before it causes a huge impact. Supervised learning and semi-supervised learning are both adopted in Autogluon. The accuracy and detection time are evaluated as the main criteria. Simulation results show that F1 scores exceed 0.9 for our proposed method, and the proposed method can achieve prediction for potential failure events within 30 and 40 seconds when symptoms such as packet loss occur.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 5\",\"pages\":\"159-162\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10471268/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10471268/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了一种基于扩展伯克利数据包过滤器(eBPF)的网络故障预测方法,该方法使用 Autogluon-Tabular 处理由 eBPF 提取的细粒度网络信息。提取的信息被视为所提模型的输入特征,该模型旨在预测随后的数据包丢失,并在造成巨大影响之前确定网络故障事件。Autogluon 采用了监督学习和半监督学习两种方法。评估的主要标准是准确率和检测时间。仿真结果表明,我们提出的方法的 F1 分数超过了 0.9,当出现丢包等症状时,我们提出的方法能在 30 秒和 40 秒内预测出潜在的故障事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation on eBPF-Based Network Failure Prediction Using AutoGluon
This study evaluates an extended Berkeley Packet Filter (eBPF)-based network failure prediction method using Autogluon-Tabular to process the fine-grained network information extracted by eBPF. The extracted information is considered as input features of the proposed model, which aims to predict the subsequent packet loss and determine a network failure event before it causes a huge impact. Supervised learning and semi-supervised learning are both adopted in Autogluon. The accuracy and detection time are evaluated as the main criteria. Simulation results show that F1 scores exceed 0.9 for our proposed method, and the proposed method can achieve prediction for potential failure events within 30 and 40 seconds when symptoms such as packet loss occur.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信