Ying Wang , Ke Li , Weijian Shen , Xingxu Huang , Lina Wu
{"title":"利用可穿戴传感器对甲基苯丙胺和可卡因进行床旁检测","authors":"Ying Wang , Ke Li , Weijian Shen , Xingxu Huang , Lina Wu","doi":"10.1016/j.ab.2024.115526","DOIUrl":null,"url":null,"abstract":"<div><p>The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"691 ","pages":"Article 115526"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-of-care testing of methamphetamine and cocaine utilizing wearable sensors\",\"authors\":\"Ying Wang , Ke Li , Weijian Shen , Xingxu Huang , Lina Wu\",\"doi\":\"10.1016/j.ab.2024.115526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.</p></div>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"691 \",\"pages\":\"Article 115526\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724000708\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724000708","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Point-of-care testing of methamphetamine and cocaine utilizing wearable sensors
The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.