在线性和非线性动力学中优化使用显式 β1/β2-Bathe 时间积分法

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mohammad Mahdi Malakiyeh , Zahra Anjomshoae , Saeed Shojaee , Saleh Hamzehei-Javaran , Klaus-Jürgen Bathe
{"title":"在线性和非线性动力学中优化使用显式 β1/β2-Bathe 时间积分法","authors":"Mohammad Mahdi Malakiyeh ,&nbsp;Zahra Anjomshoae ,&nbsp;Saeed Shojaee ,&nbsp;Saleh Hamzehei-Javaran ,&nbsp;Klaus-Jürgen Bathe","doi":"10.1016/j.compstruc.2024.107350","DOIUrl":null,"url":null,"abstract":"<div><p>In an earlier publication, we proposed a new explicit time integration scheme, the <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub><mo>/</mo><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>-Bathe method, which is simple in its formulation and showed remarkable accuracy in the solution of problems [1]. A particular strength of the method is that it can directly be used as a first-order or second-order scheme by a change of the values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>. While good results are obtained with reasonable values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>, for excellent accuracy better values of the parameters need to be chosen. We propose in this paper values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span> for the first-order scheme, best used in wave propagation analyses, and separate values for the second-order scheme, best used in analyses of structural vibrations. In each case, one set of values of <span><math><mrow><mo>(</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><msub><mi>β</mi><mn>2</mn></msub><mo>)</mo></mrow></math></span> is given and to possibly improve the results only one of the parameters needs to be changed, that is, <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> for wave propagations and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span> for structural vibrations, making the scheme a one-parameter method. Another strength of the procedure is that physical damping can directly be included in the solution, the effect of which on the stability and accuracy of the solutions we analyze in the paper. The use of the solution scheme in nonlinear analysis is, as we show in the paper, a simple extension from linear analysis. Finally, we give various solutions using the explicit <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub><mo>/</mo><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>-Bathe method in linear and nonlinear analyses to illustrate the performance of the method with the given recommendations for its use.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards optimal use of the explicit β1/β2-Bathe time integration method for linear and nonlinear dynamics\",\"authors\":\"Mohammad Mahdi Malakiyeh ,&nbsp;Zahra Anjomshoae ,&nbsp;Saeed Shojaee ,&nbsp;Saleh Hamzehei-Javaran ,&nbsp;Klaus-Jürgen Bathe\",\"doi\":\"10.1016/j.compstruc.2024.107350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In an earlier publication, we proposed a new explicit time integration scheme, the <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub><mo>/</mo><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>-Bathe method, which is simple in its formulation and showed remarkable accuracy in the solution of problems [1]. A particular strength of the method is that it can directly be used as a first-order or second-order scheme by a change of the values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>. While good results are obtained with reasonable values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>, for excellent accuracy better values of the parameters need to be chosen. We propose in this paper values of <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span> for the first-order scheme, best used in wave propagation analyses, and separate values for the second-order scheme, best used in analyses of structural vibrations. In each case, one set of values of <span><math><mrow><mo>(</mo><msub><mi>β</mi><mn>1</mn></msub><mo>,</mo><msub><mi>β</mi><mn>2</mn></msub><mo>)</mo></mrow></math></span> is given and to possibly improve the results only one of the parameters needs to be changed, that is, <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></math></span> for wave propagations and <span><math><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span> for structural vibrations, making the scheme a one-parameter method. Another strength of the procedure is that physical damping can directly be included in the solution, the effect of which on the stability and accuracy of the solutions we analyze in the paper. The use of the solution scheme in nonlinear analysis is, as we show in the paper, a simple extension from linear analysis. Finally, we give various solutions using the explicit <span><math><mrow><msub><mi>β</mi><mn>1</mn></msub><mo>/</mo><msub><mi>β</mi><mn>2</mn></msub></mrow></math></span>-Bathe method in linear and nonlinear analyses to illustrate the performance of the method with the given recommendations for its use.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924000798\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924000798","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在早先发表的文章中,我们提出了一种新的显式时间积分方案--β1/β2-Bathe 方法,该方法表述简单,在解决问题时显示出显著的精确性[1]。该方法的一个特别优势在于,通过改变 β1 和 β2 的值,它可以直接用作一阶或二阶方案。虽然使用合理的 β1 和 β2 值可以获得良好的结果,但要获得出色的精度,需要选择更好的参数值。我们在本文中提出了最适用于波传播分析的一阶方案的 β1 和 β2 值,以及最适用于结构振动分析的二阶方案的单独值。在每种情况下,都给出了一组 (β1,β2)值,要想改进结果,只需改变其中一个参数,即β1 用于波的传播,β2 用于结构振动,从而使该方案成为单参数方法。该程序的另一个优点是,物理阻尼可以直接包含在求解中,我们在本文中分析了物理阻尼对求解稳定性和准确性的影响。正如我们在文中所展示的,在非线性分析中使用该求解方案是线性分析的一个简单扩展。最后,我们给出了在线性和非线性分析中使用显式 β1/β2-Bathe 方法的各种解法,以说明该方法的性能和使用建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards optimal use of the explicit β1/β2-Bathe time integration method for linear and nonlinear dynamics

In an earlier publication, we proposed a new explicit time integration scheme, the β1/β2-Bathe method, which is simple in its formulation and showed remarkable accuracy in the solution of problems [1]. A particular strength of the method is that it can directly be used as a first-order or second-order scheme by a change of the values of β1 and β2. While good results are obtained with reasonable values of β1 and β2, for excellent accuracy better values of the parameters need to be chosen. We propose in this paper values of β1 and β2 for the first-order scheme, best used in wave propagation analyses, and separate values for the second-order scheme, best used in analyses of structural vibrations. In each case, one set of values of (β1,β2) is given and to possibly improve the results only one of the parameters needs to be changed, that is, β1 for wave propagations and β2 for structural vibrations, making the scheme a one-parameter method. Another strength of the procedure is that physical damping can directly be included in the solution, the effect of which on the stability and accuracy of the solutions we analyze in the paper. The use of the solution scheme in nonlinear analysis is, as we show in the paper, a simple extension from linear analysis. Finally, we give various solutions using the explicit β1/β2-Bathe method in linear and nonlinear analyses to illustrate the performance of the method with the given recommendations for its use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信