{"title":"浅拱低速冲击的新技术","authors":"Meng-Jing Wu , Iftikhar Azim , Xu-Hao Huang","doi":"10.1016/j.compstruc.2024.107386","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, an analytical model to analyze the low-velocity impact (LVI) response of metamaterial shallow arches subjected to rigid body impact is presented. The presented nonlinear model considers transverse deformation of the cross-section and geometric nonlinearity based on the higher-order shear theory and von Kármán nonlinearity. The research delves into three key aspects. The first is concerned with the establishment of a contact model to capture the contact characteristics between the impactor and the arch. The second aspect deals with the design of the member with Negative Poisson’s Ratio (NPR). The third aspect is concerned with the asymptotic solution of dynamic equations by using a two-perturbation technique. The proposed model is used to analyze the effects of auxetic, initial deformation, and foundation on the impact response and post-impact vibration of the arch. The results show that the contact area between the sphere impactor and the arch is elliptical. It is also noted that the contact force and indentation are highly dependent on the laminated configuration and auxetic properties. The study reveals that the presented model is a valid technique to evaluate the impact characteristics of metamaterial arches along with optimal design impact resistance of arches.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel technique for low-velocity impact of shallow arches\",\"authors\":\"Meng-Jing Wu , Iftikhar Azim , Xu-Hao Huang\",\"doi\":\"10.1016/j.compstruc.2024.107386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current study, an analytical model to analyze the low-velocity impact (LVI) response of metamaterial shallow arches subjected to rigid body impact is presented. The presented nonlinear model considers transverse deformation of the cross-section and geometric nonlinearity based on the higher-order shear theory and von Kármán nonlinearity. The research delves into three key aspects. The first is concerned with the establishment of a contact model to capture the contact characteristics between the impactor and the arch. The second aspect deals with the design of the member with Negative Poisson’s Ratio (NPR). The third aspect is concerned with the asymptotic solution of dynamic equations by using a two-perturbation technique. The proposed model is used to analyze the effects of auxetic, initial deformation, and foundation on the impact response and post-impact vibration of the arch. The results show that the contact area between the sphere impactor and the arch is elliptical. It is also noted that the contact force and indentation are highly dependent on the laminated configuration and auxetic properties. The study reveals that the presented model is a valid technique to evaluate the impact characteristics of metamaterial arches along with optimal design impact resistance of arches.</p></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794924001159\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一个分析模型,用于分析超材料浅拱在刚体冲击下的低速冲击(LVI)响应。该非线性模型考虑了横截面的横向变形以及基于高阶剪切理论和 von Kármán 非线性的几何非线性。研究涉及三个关键方面。首先是建立一个接触模型,以捕捉撞击器与拱之间的接触特性。第二个方面涉及负泊松比(NPR)构件的设计。第三方面是使用双扰动技术对动态方程进行渐近求解。所提出的模型用于分析辅助动力、初始变形和地基对拱的冲击响应和冲击后振动的影响。结果表明,球形冲击器与拱之间的接触面积呈椭圆形。研究还发现,接触力和压痕与层状结构和辅助特性有很大关系。研究表明,所提出的模型是评估超材料拱门冲击特性的有效技术,同时还能优化拱门的抗冲击设计。
A novel technique for low-velocity impact of shallow arches
In the current study, an analytical model to analyze the low-velocity impact (LVI) response of metamaterial shallow arches subjected to rigid body impact is presented. The presented nonlinear model considers transverse deformation of the cross-section and geometric nonlinearity based on the higher-order shear theory and von Kármán nonlinearity. The research delves into three key aspects. The first is concerned with the establishment of a contact model to capture the contact characteristics between the impactor and the arch. The second aspect deals with the design of the member with Negative Poisson’s Ratio (NPR). The third aspect is concerned with the asymptotic solution of dynamic equations by using a two-perturbation technique. The proposed model is used to analyze the effects of auxetic, initial deformation, and foundation on the impact response and post-impact vibration of the arch. The results show that the contact area between the sphere impactor and the arch is elliptical. It is also noted that the contact force and indentation are highly dependent on the laminated configuration and auxetic properties. The study reveals that the presented model is a valid technique to evaluate the impact characteristics of metamaterial arches along with optimal design impact resistance of arches.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.