提高质子交换膜水电解性能:氧化铱催化剂油墨分散方法的影响

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Tianchao Kuang , Jian Huang , Jun Li , Penglin Yang , Liang Zhang , Dingding Ye , Xun Zhu , Qiang Liao
{"title":"提高质子交换膜水电解性能:氧化铱催化剂油墨分散方法的影响","authors":"Tianchao Kuang ,&nbsp;Jian Huang ,&nbsp;Jun Li ,&nbsp;Penglin Yang ,&nbsp;Liang Zhang ,&nbsp;Dingding Ye ,&nbsp;Xun Zhu ,&nbsp;Qiang Liao","doi":"10.1016/j.jpowsour.2024.234543","DOIUrl":null,"url":null,"abstract":"<div><p>Iridium oxide (IrO<sub>2</sub>) is the most successful catalyst for triggering oxygen revolution reactions in proton exchange membrane water electrolyzers (PEMWE). However, conventional ultrasonic methods for ink dispersion often result in ink instability, catalyst aggregation, and sedimentation. To address these issues, we investigate the effects of the dispersion type, treatment time, and ionomer-addition sequence on the catalytic performance. Ball-milling procedure prepares a more stable catalyst ink and achieves a larger electrochemical surface area (ECSA) than ultrasonic method. Extending the ball-milling time to 12 h improves the ink stability (absorbance change rate ∼0.6 % h<sup>−1</sup>); however, over-processing causes the thickest catalyst layer, leading to an enhanced mass transport resistance. Moreover, treating an ionomer with IrO<sub>2</sub> causes the substitution of sulfonic acid groups by carboxylic acid groups and reduces the repulsive force in colloidal particles, resulting in poor ink stability, low proton conductivity, and small ECSA. Therefore, adding ionomer after ball milling is recommended for the preparation of a stable ink with high catalytic performance. The membrane electrode assembly prepared using this procedure exhibits an improved performance of 1.70 A cm<sup>−2</sup> at 1.7 V, compared with that prepared using ultrasonic methods. This work provides crucial guidance of ink preparation for large-scale production of PEMWEs.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing proton exchange membrane water electrolysis performance: Impact of iridium oxide catalyst ink dispersing methodology\",\"authors\":\"Tianchao Kuang ,&nbsp;Jian Huang ,&nbsp;Jun Li ,&nbsp;Penglin Yang ,&nbsp;Liang Zhang ,&nbsp;Dingding Ye ,&nbsp;Xun Zhu ,&nbsp;Qiang Liao\",\"doi\":\"10.1016/j.jpowsour.2024.234543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iridium oxide (IrO<sub>2</sub>) is the most successful catalyst for triggering oxygen revolution reactions in proton exchange membrane water electrolyzers (PEMWE). However, conventional ultrasonic methods for ink dispersion often result in ink instability, catalyst aggregation, and sedimentation. To address these issues, we investigate the effects of the dispersion type, treatment time, and ionomer-addition sequence on the catalytic performance. Ball-milling procedure prepares a more stable catalyst ink and achieves a larger electrochemical surface area (ECSA) than ultrasonic method. Extending the ball-milling time to 12 h improves the ink stability (absorbance change rate ∼0.6 % h<sup>−1</sup>); however, over-processing causes the thickest catalyst layer, leading to an enhanced mass transport resistance. Moreover, treating an ionomer with IrO<sub>2</sub> causes the substitution of sulfonic acid groups by carboxylic acid groups and reduces the repulsive force in colloidal particles, resulting in poor ink stability, low proton conductivity, and small ECSA. Therefore, adding ionomer after ball milling is recommended for the preparation of a stable ink with high catalytic performance. The membrane electrode assembly prepared using this procedure exhibits an improved performance of 1.70 A cm<sup>−2</sup> at 1.7 V, compared with that prepared using ultrasonic methods. This work provides crucial guidance of ink preparation for large-scale production of PEMWEs.</p></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324004956\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324004956","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化铱(IrO2)是质子交换膜水电解槽(PEMWE)中引发氧革命反应最成功的催化剂。然而,传统的超声波油墨分散方法往往会导致油墨不稳定、催化剂聚集和沉淀。为了解决这些问题,我们研究了分散类型、处理时间和离子膜添加顺序对催化性能的影响。与超声波法相比,球磨法制备的催化剂油墨更稳定,电化学表面积(ECSA)也更大。将球磨时间延长至 12 小时可提高油墨的稳定性(吸光度变化率 ∼0.6 % h-1);但过度处理会导致催化剂层变厚,从而增加质量传输阻力。此外,用 IrO2 处理离子聚合物会导致磺酸基团被羧酸基团取代,降低胶体颗粒中的排斥力,从而导致油墨稳定性差、质子传导性低和 ECSA 小。因此,建议在球磨后添加离子聚合物,以制备具有高催化性能的稳定油墨。与使用超声波方法制备的膜电极组件相比,使用该方法制备的膜电极组件在 1.7 V 时的性能提高了 1.70 A cm-2。这项工作为大规模生产 PEMWEs 的油墨制备提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing proton exchange membrane water electrolysis performance: Impact of iridium oxide catalyst ink dispersing methodology

Enhancing proton exchange membrane water electrolysis performance: Impact of iridium oxide catalyst ink dispersing methodology

Iridium oxide (IrO2) is the most successful catalyst for triggering oxygen revolution reactions in proton exchange membrane water electrolyzers (PEMWE). However, conventional ultrasonic methods for ink dispersion often result in ink instability, catalyst aggregation, and sedimentation. To address these issues, we investigate the effects of the dispersion type, treatment time, and ionomer-addition sequence on the catalytic performance. Ball-milling procedure prepares a more stable catalyst ink and achieves a larger electrochemical surface area (ECSA) than ultrasonic method. Extending the ball-milling time to 12 h improves the ink stability (absorbance change rate ∼0.6 % h−1); however, over-processing causes the thickest catalyst layer, leading to an enhanced mass transport resistance. Moreover, treating an ionomer with IrO2 causes the substitution of sulfonic acid groups by carboxylic acid groups and reduces the repulsive force in colloidal particles, resulting in poor ink stability, low proton conductivity, and small ECSA. Therefore, adding ionomer after ball milling is recommended for the preparation of a stable ink with high catalytic performance. The membrane electrode assembly prepared using this procedure exhibits an improved performance of 1.70 A cm−2 at 1.7 V, compared with that prepared using ultrasonic methods. This work provides crucial guidance of ink preparation for large-scale production of PEMWEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信