氧空位介导的铋基光催化剂

Jiaqi Tian , Jianpeng Li , Yadan Guo , Zhongyi Liu , Bin Liu , Jun Li
{"title":"氧空位介导的铋基光催化剂","authors":"Jiaqi Tian ,&nbsp;Jianpeng Li ,&nbsp;Yadan Guo ,&nbsp;Zhongyi Liu ,&nbsp;Bin Liu ,&nbsp;Jun Li","doi":"10.1016/j.apmate.2024.100201","DOIUrl":null,"url":null,"abstract":"<div><p>Sunlight-driven photocatalysis, which can produce clean fuels and mitigate environmental pollution, has received extensive research attention due to its potential for addressing both energy shortages and environmental crises. Bismuth (Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures, exhibit promising applications in solar-driven photocatalysis. Oxygen vacancy (OV) engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation. Based on OV engineering, this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods, regulation strategies, and applications in photocatalytic field. The synthetic methods of Bi-based photocatalysts with OVs (BPOVs) are classified into hydrothermal, solvothermal, ultraviolet light reduction, calcination, chemical etching, and mechanical methods based on different reaction types, which provide the possibility for the structural regulation of BPOVs, including dimensional regulation, vacancy creation, elemental doping, and heterojunction fabrication. Furthermore, this review also highlights the photocatalytic applications of BPOVs, including CO<sub>2</sub> reduction, N<sub>2</sub> fixation, H<sub>2</sub> generation, O<sub>2</sub> evolution, pollutant degradation, cancer therapy, and bacteria inactivation. Finally, the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000320/pdfft?md5=cd9fb58b30029c0e38646e4dba7e26c1&pid=1-s2.0-S2772834X24000320-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy mediated bismuth-based photocatalysts\",\"authors\":\"Jiaqi Tian ,&nbsp;Jianpeng Li ,&nbsp;Yadan Guo ,&nbsp;Zhongyi Liu ,&nbsp;Bin Liu ,&nbsp;Jun Li\",\"doi\":\"10.1016/j.apmate.2024.100201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sunlight-driven photocatalysis, which can produce clean fuels and mitigate environmental pollution, has received extensive research attention due to its potential for addressing both energy shortages and environmental crises. Bismuth (Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures, exhibit promising applications in solar-driven photocatalysis. Oxygen vacancy (OV) engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation. Based on OV engineering, this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods, regulation strategies, and applications in photocatalytic field. The synthetic methods of Bi-based photocatalysts with OVs (BPOVs) are classified into hydrothermal, solvothermal, ultraviolet light reduction, calcination, chemical etching, and mechanical methods based on different reaction types, which provide the possibility for the structural regulation of BPOVs, including dimensional regulation, vacancy creation, elemental doping, and heterojunction fabrication. Furthermore, this review also highlights the photocatalytic applications of BPOVs, including CO<sub>2</sub> reduction, N<sub>2</sub> fixation, H<sub>2</sub> generation, O<sub>2</sub> evolution, pollutant degradation, cancer therapy, and bacteria inactivation. Finally, the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000320/pdfft?md5=cd9fb58b30029c0e38646e4dba7e26c1&pid=1-s2.0-S2772834X24000320-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳光驱动的光催化技术可以生产清洁燃料并减轻环境污染,因其在解决能源短缺和环境危机方面的潜力而受到广泛关注。基于铋(Bi)的光催化剂具有宽光谱太阳光吸收能力和可调结构,在太阳光驱动的光催化中具有广阔的应用前景。氧空位(OV)工程是一种广受认可的策略,在加速电荷分离和小分子活化方面具有巨大潜力。本综述以 OV 工程为基础,重点介绍 Bi 基光催化剂,并对其合成方法、调节策略以及在光催化领域的应用进行了全面概述。根据不同的反应类型,带 OV 的 Bi 基光催化剂(BPOVs)的合成方法分为水热法、溶热法、紫外光还原法、煅烧法、化学蚀刻法和机械法,这些方法为 BPOVs 的结构调控提供了可能,包括尺寸调控、空位产生、元素掺杂和异质结制造。此外,本综述还重点介绍了 BPOV 的光催化应用,包括 CO2 还原、N2 固定、H2 生成、O2 进化、污染物降解、癌症治疗和细菌灭活。最后,对 BPOVs 光催化剂的未来发展进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen vacancy mediated bismuth-based photocatalysts

Oxygen vacancy mediated bismuth-based photocatalysts

Sunlight-driven photocatalysis, which can produce clean fuels and mitigate environmental pollution, has received extensive research attention due to its potential for addressing both energy shortages and environmental crises. Bismuth (Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures, exhibit promising applications in solar-driven photocatalysis. Oxygen vacancy (OV) engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation. Based on OV engineering, this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods, regulation strategies, and applications in photocatalytic field. The synthetic methods of Bi-based photocatalysts with OVs (BPOVs) are classified into hydrothermal, solvothermal, ultraviolet light reduction, calcination, chemical etching, and mechanical methods based on different reaction types, which provide the possibility for the structural regulation of BPOVs, including dimensional regulation, vacancy creation, elemental doping, and heterojunction fabrication. Furthermore, this review also highlights the photocatalytic applications of BPOVs, including CO2 reduction, N2 fixation, H2 generation, O2 evolution, pollutant degradation, cancer therapy, and bacteria inactivation. Finally, the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信