Qi Li , Xuan Zhao , Liangxu Xu , Xiaochen Xun , Fangfang Gao , Bin Zhao , Qingliang Liao , Yue Zhang
{"title":"低维微波吸收器的工程策略:基础、进展与展望","authors":"Qi Li , Xuan Zhao , Liangxu Xu , Xiaochen Xun , Fangfang Gao , Bin Zhao , Qingliang Liao , Yue Zhang","doi":"10.1016/j.mser.2024.100795","DOIUrl":null,"url":null,"abstract":"<div><p>The ubiquitous electromagnetic interference and pollution have become a deteriorating issue with the rapid advancement of wireless communication technologies and devices. Developing enhanced microwave absorber is a feasible and persistent research hotspot to counter serious electromagnetic radiation problems. To this end, state-of-the-art low-dimensional materials, including zero-dimensional, one-dimensional, two-dimensional, and mixed-dimensional nanoarchitectures have sprung up on account of their built-in merits including the modulable crystal and electronic structures, exquisite nanoarchitectures, and quantum and dielectric confinement effects. However, the pristine low-dimensional materials perform inferior status in microwave attenuation due to the monotonous dielectric or magnetic responses, the incoordination between wavelength and nanoscale, and semi-empirical electromagnetic attenuation mechanism. Therefore, the elaborate engineering strategies in low-dimensional materials, such as architecture modification, interface engineering, defect engineering, entropy manipulation, and dielectric-magnetic synergy are motivated to contend for enhanced microwave absorption performance. This review provides the cutting-edge progresses of engineering strategies for low-dimensional microwave absorbers. Firstly, the underlying microwave attenuation mechanisms of low-dimensional microwave absorbers are introduced thoroughly. Then, the leading-edge engineering strategies and low-dimensional microwave absorbers inspired by the basic principle of microwave attenuation are summarized and outlined. In the end, the challenges, and outlooks for engineering strategies in low-dimensional microwave absorbers are combed to pinpoint the long-term development orientation.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100795"},"PeriodicalIF":31.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering strategies in low-dimensional microwave absorbers: Fundamentals, progress, and outlook\",\"authors\":\"Qi Li , Xuan Zhao , Liangxu Xu , Xiaochen Xun , Fangfang Gao , Bin Zhao , Qingliang Liao , Yue Zhang\",\"doi\":\"10.1016/j.mser.2024.100795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ubiquitous electromagnetic interference and pollution have become a deteriorating issue with the rapid advancement of wireless communication technologies and devices. Developing enhanced microwave absorber is a feasible and persistent research hotspot to counter serious electromagnetic radiation problems. To this end, state-of-the-art low-dimensional materials, including zero-dimensional, one-dimensional, two-dimensional, and mixed-dimensional nanoarchitectures have sprung up on account of their built-in merits including the modulable crystal and electronic structures, exquisite nanoarchitectures, and quantum and dielectric confinement effects. However, the pristine low-dimensional materials perform inferior status in microwave attenuation due to the monotonous dielectric or magnetic responses, the incoordination between wavelength and nanoscale, and semi-empirical electromagnetic attenuation mechanism. Therefore, the elaborate engineering strategies in low-dimensional materials, such as architecture modification, interface engineering, defect engineering, entropy manipulation, and dielectric-magnetic synergy are motivated to contend for enhanced microwave absorption performance. This review provides the cutting-edge progresses of engineering strategies for low-dimensional microwave absorbers. Firstly, the underlying microwave attenuation mechanisms of low-dimensional microwave absorbers are introduced thoroughly. Then, the leading-edge engineering strategies and low-dimensional microwave absorbers inspired by the basic principle of microwave attenuation are summarized and outlined. In the end, the challenges, and outlooks for engineering strategies in low-dimensional microwave absorbers are combed to pinpoint the long-term development orientation.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"159 \",\"pages\":\"Article 100795\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000251\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000251","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering strategies in low-dimensional microwave absorbers: Fundamentals, progress, and outlook
The ubiquitous electromagnetic interference and pollution have become a deteriorating issue with the rapid advancement of wireless communication technologies and devices. Developing enhanced microwave absorber is a feasible and persistent research hotspot to counter serious electromagnetic radiation problems. To this end, state-of-the-art low-dimensional materials, including zero-dimensional, one-dimensional, two-dimensional, and mixed-dimensional nanoarchitectures have sprung up on account of their built-in merits including the modulable crystal and electronic structures, exquisite nanoarchitectures, and quantum and dielectric confinement effects. However, the pristine low-dimensional materials perform inferior status in microwave attenuation due to the monotonous dielectric or magnetic responses, the incoordination between wavelength and nanoscale, and semi-empirical electromagnetic attenuation mechanism. Therefore, the elaborate engineering strategies in low-dimensional materials, such as architecture modification, interface engineering, defect engineering, entropy manipulation, and dielectric-magnetic synergy are motivated to contend for enhanced microwave absorption performance. This review provides the cutting-edge progresses of engineering strategies for low-dimensional microwave absorbers. Firstly, the underlying microwave attenuation mechanisms of low-dimensional microwave absorbers are introduced thoroughly. Then, the leading-edge engineering strategies and low-dimensional microwave absorbers inspired by the basic principle of microwave attenuation are summarized and outlined. In the end, the challenges, and outlooks for engineering strategies in low-dimensional microwave absorbers are combed to pinpoint the long-term development orientation.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.