双对称麦克唐纳多项式的对称性和皮耶里规则

IF 1 3区 数学 Q1 MATHEMATICS
Manuel Concha, Luc Lapointe
{"title":"双对称麦克唐纳多项式的对称性和皮耶里规则","authors":"Manuel Concha,&nbsp;Luc Lapointe","doi":"10.1016/j.ejc.2024.103973","DOIUrl":null,"url":null,"abstract":"<div><p>Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and <span><math><mi>t</mi></math></span>-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and Pieri rules for the bisymmetric Macdonald polynomials\",\"authors\":\"Manuel Concha,&nbsp;Luc Lapointe\",\"doi\":\"10.1016/j.ejc.2024.103973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and <span><math><mi>t</mi></math></span>-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000581\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

双对称麦克唐纳多项式可以通过非对称麦克唐纳多项式的反对称化和 t 对称化过程得到。利用双仿射赫克代数,我们证明了双对称麦克唐纳多项式的求值满足一般麦克唐纳多项式所满足的对称性。然后,我们得到了双对称麦克唐纳多项式的皮耶里规则,其中和是在某些垂直条带上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and Pieri rules for the bisymmetric Macdonald polynomials

Bisymmetric Macdonald polynomials can be obtained through a process of antisymmetrization and t-symmetrization of non-symmetric Macdonald polynomials. Using the double affine Hecke algebra, we show that the evaluation of the bisymmetric Macdonald polynomials satisfies a symmetry property generalizing that satisfied by the usual Macdonald polynomials. We then obtain Pieri rules for the bisymmetric Macdonald polynomials where the sums are over certain vertical strips.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信