通过光场调制和钯位点光沉积构建高活性光催化界面

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-04-10 DOI:10.1016/j.giant.2024.100266
Zheng Wang , Min Liao , Li Ling , Meng Zhang
{"title":"通过光场调制和钯位点光沉积构建高活性光催化界面","authors":"Zheng Wang ,&nbsp;Min Liao ,&nbsp;Li Ling ,&nbsp;Meng Zhang","doi":"10.1016/j.giant.2024.100266","DOIUrl":null,"url":null,"abstract":"<div><p>Anchoring noble metal sites through photo-reduction is an effective way to modulate charge distribution on photocatalytic interfaces, thereby enhancing photocatalytic performance. The irradiation field on the exposed surfaces of photocatalysts has an important influence on the morphology and distribution of noble metal sites. However, non-uniform light field derived from the scattering effects of particle-form photocatalysts hinders the well-distributed photo-deposition of noble metal sites. To address this challenge, we proposed a photo-deposition method utilizing the optical fiber coated with photocatalysts. TiO<sub>2</sub> nanorod (NR) array was coated on the optical fiber to achieve a well-distributed irradiation filed across the NR array. This resulted in a concentration of the irradiation field primarily within the NR array, maintaining uniformly distributed light intensities throughout. Palladium (Pd) sites dominated by nanoclusters were well distributed on TiO<sub>2</sub> NR array utilizing a photo-reduction method. These Pd sites functioned as electron acceptors, facilitating the effective separation and transfer of photo-generated carriers. Consequently, an highly active photocatalytic reaction interface was constructed, demonstrating the accumulation of a substantial concentration of holes and their efficient conversion into hydroxyl radicals (·OH). Notably, hydroxyl radicals with a concentration of 62.6 μM could be generated within 14.4 min. The construction of this efficient photocatalytic interface offers an optimal platform for accelerating photocatalytic reactions and enhancing photocatalytic efficiency.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100266"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000316/pdfft?md5=431896b84a5ceaeccfa934bef5e9f450&pid=1-s2.0-S2666542524000316-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Construction of highly active photocatalytic interfaces through light field modulation and photo-deposition of Pd sites\",\"authors\":\"Zheng Wang ,&nbsp;Min Liao ,&nbsp;Li Ling ,&nbsp;Meng Zhang\",\"doi\":\"10.1016/j.giant.2024.100266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Anchoring noble metal sites through photo-reduction is an effective way to modulate charge distribution on photocatalytic interfaces, thereby enhancing photocatalytic performance. The irradiation field on the exposed surfaces of photocatalysts has an important influence on the morphology and distribution of noble metal sites. However, non-uniform light field derived from the scattering effects of particle-form photocatalysts hinders the well-distributed photo-deposition of noble metal sites. To address this challenge, we proposed a photo-deposition method utilizing the optical fiber coated with photocatalysts. TiO<sub>2</sub> nanorod (NR) array was coated on the optical fiber to achieve a well-distributed irradiation filed across the NR array. This resulted in a concentration of the irradiation field primarily within the NR array, maintaining uniformly distributed light intensities throughout. Palladium (Pd) sites dominated by nanoclusters were well distributed on TiO<sub>2</sub> NR array utilizing a photo-reduction method. These Pd sites functioned as electron acceptors, facilitating the effective separation and transfer of photo-generated carriers. Consequently, an highly active photocatalytic reaction interface was constructed, demonstrating the accumulation of a substantial concentration of holes and their efficient conversion into hydroxyl radicals (·OH). Notably, hydroxyl radicals with a concentration of 62.6 μM could be generated within 14.4 min. The construction of this efficient photocatalytic interface offers an optimal platform for accelerating photocatalytic reactions and enhancing photocatalytic efficiency.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"18 \",\"pages\":\"Article 100266\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000316/pdfft?md5=431896b84a5ceaeccfa934bef5e9f450&pid=1-s2.0-S2666542524000316-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000316\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000316","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过光还原锚定贵金属位点是调节光催化界面电荷分布从而提高光催化性能的有效方法。光催化剂暴露表面上的辐照场对贵金属位点的形态和分布有重要影响。然而,颗粒状光催化剂的散射效应所产生的不均匀光场阻碍了贵金属位点的均匀光沉积。为了解决这一难题,我们提出了一种利用涂有光催化剂的光纤进行光沉积的方法。在光纤上涂覆 TiO2 纳米棒(NR)阵列,以实现 NR 阵列上均匀分布的辐照。这使得辐照场主要集中在 NR 阵列内,从而保持了整个阵列均匀分布的光强度。利用光还原方法,以纳米团簇为主的钯(Pd)位点被很好地分布在 TiO2 NR 阵列上。这些钯位发挥了电子受体的作用,促进了光生载流子的有效分离和转移。因此,构建了一个高度活跃的光催化反应界面,展示了大量空穴的聚集及其向羟基自由基(-OH)的高效转化。值得注意的是,在 14.4 分钟内就能生成浓度为 62.6 μM 的羟基自由基。这种高效光催化界面的构建为加速光催化反应和提高光催化效率提供了一个最佳平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Construction of highly active photocatalytic interfaces through light field modulation and photo-deposition of Pd sites

Construction of highly active photocatalytic interfaces through light field modulation and photo-deposition of Pd sites

Anchoring noble metal sites through photo-reduction is an effective way to modulate charge distribution on photocatalytic interfaces, thereby enhancing photocatalytic performance. The irradiation field on the exposed surfaces of photocatalysts has an important influence on the morphology and distribution of noble metal sites. However, non-uniform light field derived from the scattering effects of particle-form photocatalysts hinders the well-distributed photo-deposition of noble metal sites. To address this challenge, we proposed a photo-deposition method utilizing the optical fiber coated with photocatalysts. TiO2 nanorod (NR) array was coated on the optical fiber to achieve a well-distributed irradiation filed across the NR array. This resulted in a concentration of the irradiation field primarily within the NR array, maintaining uniformly distributed light intensities throughout. Palladium (Pd) sites dominated by nanoclusters were well distributed on TiO2 NR array utilizing a photo-reduction method. These Pd sites functioned as electron acceptors, facilitating the effective separation and transfer of photo-generated carriers. Consequently, an highly active photocatalytic reaction interface was constructed, demonstrating the accumulation of a substantial concentration of holes and their efficient conversion into hydroxyl radicals (·OH). Notably, hydroxyl radicals with a concentration of 62.6 μM could be generated within 14.4 min. The construction of this efficient photocatalytic interface offers an optimal platform for accelerating photocatalytic reactions and enhancing photocatalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信