{"title":"高转变温度磷脂对提高氧化还原敏感性多柔比星脂质体在结肠癌模型中疗效的影响","authors":"Elaheh Mirhadi , Anis Askarizadeh , Leila Farhoudi , Mohammad Mashreghi , Saeed Behboodifar , Seyedeh Hoda Alavizadeh , Leila Arabi , Mahmoud Reza Jaafari","doi":"10.1016/j.chemphyslip.2024.105396","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10′-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG<sub>2000</sub>-DSPE, and cholesterol. <em>In situ</em> drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100<!--> <!-->%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from −6 mV to −18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1<!--> <!-->% w/v, resulting in a significant burst release of up to 40<!--> <!-->%. The <em>in vivo</em> therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52–53.5<!--> <!-->°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer <em>in vitro</em> and <em>in vivo</em>. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.</p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"261 ","pages":"Article 105396"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of phospholipids with high transition temperature to enhance redox-sensitive liposomal doxorubicin efficacy in colon carcinoma model\",\"authors\":\"Elaheh Mirhadi , Anis Askarizadeh , Leila Farhoudi , Mohammad Mashreghi , Saeed Behboodifar , Seyedeh Hoda Alavizadeh , Leila Arabi , Mahmoud Reza Jaafari\",\"doi\":\"10.1016/j.chemphyslip.2024.105396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10′-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG<sub>2000</sub>-DSPE, and cholesterol. <em>In situ</em> drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100<!--> <!-->%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from −6 mV to −18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1<!--> <!-->% w/v, resulting in a significant burst release of up to 40<!--> <!-->%. The <em>in vivo</em> therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52–53.5<!--> <!-->°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer <em>in vitro</em> and <em>in vivo</em>. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.</p></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":\"261 \",\"pages\":\"Article 105396\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009308424000215\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308424000215","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The impact of phospholipids with high transition temperature to enhance redox-sensitive liposomal doxorubicin efficacy in colon carcinoma model
In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10′-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100 %) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from −6 mV to −18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1 % w/v, resulting in a significant burst release of up to 40 %. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52–53.5 °C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.