非凸多目标优化中一大类下降算法的收敛性和复杂性保证

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Matteo Lapucci
{"title":"非凸多目标优化中一大类下降算法的收敛性和复杂性保证","authors":"Matteo Lapucci","doi":"10.1016/j.orl.2024.107115","DOIUrl":null,"url":null,"abstract":"<div><p>We address conditions for global convergence and worst-case complexity bounds of descent algorithms in nonconvex multi-objective optimization. Specifically, we define the concept of steepest-descent-related directions. We consider iterative algorithms taking steps along such directions, selecting the stepsize according to a standard Armijo-type rule. We prove that methods fitting this framework automatically enjoy global convergence properties. Moreover, we show that a slightly stricter property, satisfied by most known algorithms, guarantees the same complexity bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> as the steepest descent method.</p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":"54 ","pages":"Article 107115"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and complexity guarantees for a wide class of descent algorithms in nonconvex multi-objective optimization\",\"authors\":\"Matteo Lapucci\",\"doi\":\"10.1016/j.orl.2024.107115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We address conditions for global convergence and worst-case complexity bounds of descent algorithms in nonconvex multi-objective optimization. Specifically, we define the concept of steepest-descent-related directions. We consider iterative algorithms taking steps along such directions, selecting the stepsize according to a standard Armijo-type rule. We prove that methods fitting this framework automatically enjoy global convergence properties. Moreover, we show that a slightly stricter property, satisfied by most known algorithms, guarantees the same complexity bound of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> as the steepest descent method.</p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":\"54 \",\"pages\":\"Article 107115\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000518\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000518","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了非凸多目标优化中下降算法的全局收敛条件和最坏情况复杂度界限。具体来说,我们定义了最陡下降相关方向的概念。我们考虑沿着这些方向采取步骤的迭代算法,并根据标准的阿米约类型规则选择步长。我们证明,符合这一框架的方法自动享有全局收敛特性。此外,我们还证明,大多数已知算法都能满足的一个略微严格的属性,保证了与最陡降法相同的 O(ϵ-2) 复杂度约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and complexity guarantees for a wide class of descent algorithms in nonconvex multi-objective optimization

We address conditions for global convergence and worst-case complexity bounds of descent algorithms in nonconvex multi-objective optimization. Specifically, we define the concept of steepest-descent-related directions. We consider iterative algorithms taking steps along such directions, selecting the stepsize according to a standard Armijo-type rule. We prove that methods fitting this framework automatically enjoy global convergence properties. Moreover, we show that a slightly stricter property, satisfied by most known algorithms, guarantees the same complexity bound of O(ϵ2) as the steepest descent method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信