Frederik-Willem Fourie Fred , Kobus Langedock , Roeland Develter , Harold Loop , Christopher J. Peck , Leandro Ponsoni , Hans Pirlet , Wieter Boone
{"title":"声纳记录仪:实现长期水下声纳观测","authors":"Frederik-Willem Fourie Fred , Kobus Langedock , Roeland Develter , Harold Loop , Christopher J. Peck , Leandro Ponsoni , Hans Pirlet , Wieter Boone","doi":"10.1016/j.ohx.2024.e00531","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal seas are under increasing pressure from extreme weather events and sea level rise, resulting in impacts such as changing hydrodynamic conditions, coastal erosion, and marine heat waves. To monitor changes in coastal marine habitats, such as reefs and macrophytes meadows, which add to the resilience of our coasts, consistent, medium- to long-term seafloor observations are needed. This project aims to deliver repeated, high-frequency sonar surveys on a stationary seabed mooring of a specific target area over a period of up to several months. A new stand-alone subsea system, the Sonarlogger, based on a battery pack, low-power logger and a high-resolution scanning sonar, was developed. It allows for long-term deployments with a customisable battery pack, WI-FI download and configurable sleep state. The system has been tested for over 130 days in dynamic coastal environments off the Belgian coast. Combined with auxiliary sensors, such as for measuring currents, waves and turbidity, this system enables comprehensive studies of morphologic changes and changing benthic ecosystems. Moreover, this system has the capacity to provide measurements of coastal environments during storms, where conventional systems may fall short, providing insights into event-based changes of the seafloor.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"18 ","pages":"Article e00531"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000257/pdfft?md5=0f171885d293edf27d1a8fa9ebe8c7b9&pid=1-s2.0-S2468067224000257-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sonarlogger: Enabling long-term underwater sonar observations\",\"authors\":\"Frederik-Willem Fourie Fred , Kobus Langedock , Roeland Develter , Harold Loop , Christopher J. Peck , Leandro Ponsoni , Hans Pirlet , Wieter Boone\",\"doi\":\"10.1016/j.ohx.2024.e00531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coastal seas are under increasing pressure from extreme weather events and sea level rise, resulting in impacts such as changing hydrodynamic conditions, coastal erosion, and marine heat waves. To monitor changes in coastal marine habitats, such as reefs and macrophytes meadows, which add to the resilience of our coasts, consistent, medium- to long-term seafloor observations are needed. This project aims to deliver repeated, high-frequency sonar surveys on a stationary seabed mooring of a specific target area over a period of up to several months. A new stand-alone subsea system, the Sonarlogger, based on a battery pack, low-power logger and a high-resolution scanning sonar, was developed. It allows for long-term deployments with a customisable battery pack, WI-FI download and configurable sleep state. The system has been tested for over 130 days in dynamic coastal environments off the Belgian coast. Combined with auxiliary sensors, such as for measuring currents, waves and turbidity, this system enables comprehensive studies of morphologic changes and changing benthic ecosystems. Moreover, this system has the capacity to provide measurements of coastal environments during storms, where conventional systems may fall short, providing insights into event-based changes of the seafloor.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"18 \",\"pages\":\"Article e00531\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000257/pdfft?md5=0f171885d293edf27d1a8fa9ebe8c7b9&pid=1-s2.0-S2468067224000257-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Coastal seas are under increasing pressure from extreme weather events and sea level rise, resulting in impacts such as changing hydrodynamic conditions, coastal erosion, and marine heat waves. To monitor changes in coastal marine habitats, such as reefs and macrophytes meadows, which add to the resilience of our coasts, consistent, medium- to long-term seafloor observations are needed. This project aims to deliver repeated, high-frequency sonar surveys on a stationary seabed mooring of a specific target area over a period of up to several months. A new stand-alone subsea system, the Sonarlogger, based on a battery pack, low-power logger and a high-resolution scanning sonar, was developed. It allows for long-term deployments with a customisable battery pack, WI-FI download and configurable sleep state. The system has been tested for over 130 days in dynamic coastal environments off the Belgian coast. Combined with auxiliary sensors, such as for measuring currents, waves and turbidity, this system enables comprehensive studies of morphologic changes and changing benthic ecosystems. Moreover, this system has the capacity to provide measurements of coastal environments during storms, where conventional systems may fall short, providing insights into event-based changes of the seafloor.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.