绿色品系中细胞色素 b5 的多样性先于丁香木质素生物合成的进化

Xianhai Zhao, Yunjun Zhao, Qing-yin Zeng, Chang-Jun Liu
{"title":"绿色品系中细胞色素 b5 的多样性先于丁香木质素生物合成的进化","authors":"Xianhai Zhao, Yunjun Zhao, Qing-yin Zeng, Chang-Jun Liu","doi":"10.1093/plcell/koae120","DOIUrl":null,"url":null,"abstract":"Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S)-lignin is lineage-specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it co-evolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs co-opted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the re-emergence of S-lignin biosynthesis in angiosperms.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytochrome b5 diversity in green lineages preceded the evolution of syringyl lignin biosynthesis\",\"authors\":\"Xianhai Zhao, Yunjun Zhao, Qing-yin Zeng, Chang-Jun Liu\",\"doi\":\"10.1093/plcell/koae120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S)-lignin is lineage-specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it co-evolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs co-opted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the re-emergence of S-lignin biosynthesis in angiosperms.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koae120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

木质素的产生标志着维管束植物进化的一个里程碑,而丁香基(S)-木质素的出现具有品系特异性。被子植物的 S-木质素生物合成由阿魏酸 5-羟化酶(F5H,CYP84A1)介导,被认为是最近的进化事件。F5H 的催化独特地需要细胞色素 b5 蛋白 CB5D 作为强制性氧化还原伙伴。然而,目前仍不清楚 CB5D 的功能是如何起源的,以及它是否与 F5H 共同进化。我们在此揭示了支持 F5H 催化 S-木质素生物合成的 CB5D 型功能的古老进化过程。CB5D 出现于陆生植物的近亲--藻类中,并在胚叶植物,尤其是被子植物中得到保守和增殖,这表明 CB5 家族在陆生化之前就已经实现了功能多样化。CB5 血红素结合域的螺旋 5 中含有酸性氨基酸残基的序列基序有助于陆生植物保留 CB5D 的功能,而藻类则没有。值得注意的是,产生 S-木质素的狼尾藻中的 CB5 缺乏这些残基,因此没有 CB5D 型功能。Selaginella 中独立进化的 S-木质素生物合成 F5H(CYP788A1)依赖于 NADPH 依赖性细胞色素 P450 还原酶作为唯一的氧化还原伙伴,这一点与被子植物不同。这些结果表明,被子植物的 F5H 与古老的 CB5D 共同作用,形成了一个现代的细胞色素 P450 单氧化酶系统,用于芳香环的元羟化,从而使 S-木质素的生物合成在被子植物中重新出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cytochrome b5 diversity in green lineages preceded the evolution of syringyl lignin biosynthesis
Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S)-lignin is lineage-specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it co-evolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs co-opted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the re-emergence of S-lignin biosynthesis in angiosperms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信