大规模基因组缩减早于共生藻科甲藻的分化

Sarah Shah, Katherine E Dougan, Yibi Chen, Rosalyn Lo, Gemma Laird, Michael D A Fortuin, Subash K Rai, Valentine Murigneux, Anthony J Bellantuono, Mauricio Rodriguez-Lanetty, Debashish Bhattacharya, Cheong Xin Chan
{"title":"大规模基因组缩减早于共生藻科甲藻的分化","authors":"Sarah Shah, Katherine E Dougan, Yibi Chen, Rosalyn Lo, Gemma Laird, Michael D A Fortuin, Subash K Rai, Valentine Murigneux, Anthony J Bellantuono, Mauricio Rodriguez-Lanetty, Debashish Bhattacharya, Cheong Xin Chan","doi":"10.1093/ismejo/wrae059","DOIUrl":null,"url":null,"abstract":"Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e., symbiogenesis) is hypothesised to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here we present de novo assembled genomes (1.2–1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenisation. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates\",\"authors\":\"Sarah Shah, Katherine E Dougan, Yibi Chen, Rosalyn Lo, Gemma Laird, Michael D A Fortuin, Subash K Rai, Valentine Murigneux, Anthony J Bellantuono, Mauricio Rodriguez-Lanetty, Debashish Bhattacharya, Cheong Xin Chan\",\"doi\":\"10.1093/ismejo/wrae059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e., symbiogenesis) is hypothesised to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here we present de novo assembled genomes (1.2–1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenisation. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

共生藻科的甲藻在分类上多种多样,主要是共生藻,因与珊瑚的关系而闻名。这些类群的祖先据信是自由生活的。据推测,共生关系的建立(即共生)在共生藻科的进化过程中发生过多次,但其对这些类群基因组进化的影响在很大程度上是未知的。在 Symbiodiniaceae 科中,Effrenium 属是一个自由生活的类群,在系统发育上位于共生类群已经出现的两个强大的属群之间。Effrenium 中明显缺乏共生现象,这表明该系可能保留了共生藻科的祖先特征。在此,我们展示了从三个分离株中提取的全新组装基因组(大小为 1.2-1.9 Gbp)和转录组数据,并进行了包括 16 个 Symbiodiniaceae 类群和其他甲藻的比较分析。令人惊讶的是,我们发现通常与共生生活方式相关的基因组缩减早于共生藻科的起源。自由生活的生活方式将埃弗里藻与共生的 Symbiodiniaceae 区分开来,因为它们的内含子更长、mRNA 编辑更广泛、特定世系的基因组更少(约 30%)、假基因化水平更低(约 10%)。这些结果表明了基因组的减少和对不同生活方式的适应如何交织在一起,推动了共生双子叶植物的多样化和基因组进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e., symbiogenesis) is hypothesised to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here we present de novo assembled genomes (1.2–1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenisation. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信