{"title":"用于高灵敏度彩色图像传感器的色散工程超表面","authors":"Masashi Miyata","doi":"10.1007/s10043-024-00882-8","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing the sensitivity of image sensors is a major challenge for current imaging technology. Researchers are tackling it because highly sensitive sensors enable objects to be recognized even in dark environments, which is critical for today’s smartphones, wearable devices, and automobiles. Unfortunately, conventional image-sensor architectures use light-absorptive color filters on every pixel, which fundamentally limits the detected light power per pixel. Recent advances in optical metasurfaces have led to the creation of pixelated light-transmissive color splitters with the potential to enhance sensor sensitivity. These metasurfaces can be used instead of color filters to distinguish primary colors, and unlike color filters, they can direct almost all of the incident light to the photodetectors, thereby maximizing the detectable light power. This review focuses on such metasurface-based color splitters enabling high-sensitivity color-image sensors. Their underlying principles are introduced with a focus on dispersion engineering. Then, their capabilities as optical elements are assessed on the basis of our recent findings. Finally, it is discussed how they can be used to create high-sensitivity color-image sensors.</p></div>","PeriodicalId":722,"journal":{"name":"Optical Review","volume":"31 3","pages":"290 - 298"},"PeriodicalIF":1.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10043-024-00882-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Dispersion-engineered metasurfaces for high-sensitivity color image sensors\",\"authors\":\"Masashi Miyata\",\"doi\":\"10.1007/s10043-024-00882-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing the sensitivity of image sensors is a major challenge for current imaging technology. Researchers are tackling it because highly sensitive sensors enable objects to be recognized even in dark environments, which is critical for today’s smartphones, wearable devices, and automobiles. Unfortunately, conventional image-sensor architectures use light-absorptive color filters on every pixel, which fundamentally limits the detected light power per pixel. Recent advances in optical metasurfaces have led to the creation of pixelated light-transmissive color splitters with the potential to enhance sensor sensitivity. These metasurfaces can be used instead of color filters to distinguish primary colors, and unlike color filters, they can direct almost all of the incident light to the photodetectors, thereby maximizing the detectable light power. This review focuses on such metasurface-based color splitters enabling high-sensitivity color-image sensors. Their underlying principles are introduced with a focus on dispersion engineering. Then, their capabilities as optical elements are assessed on the basis of our recent findings. Finally, it is discussed how they can be used to create high-sensitivity color-image sensors.</p></div>\",\"PeriodicalId\":722,\"journal\":{\"name\":\"Optical Review\",\"volume\":\"31 3\",\"pages\":\"290 - 298\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10043-024-00882-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Review\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10043-024-00882-8\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Review","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10043-024-00882-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Dispersion-engineered metasurfaces for high-sensitivity color image sensors
Increasing the sensitivity of image sensors is a major challenge for current imaging technology. Researchers are tackling it because highly sensitive sensors enable objects to be recognized even in dark environments, which is critical for today’s smartphones, wearable devices, and automobiles. Unfortunately, conventional image-sensor architectures use light-absorptive color filters on every pixel, which fundamentally limits the detected light power per pixel. Recent advances in optical metasurfaces have led to the creation of pixelated light-transmissive color splitters with the potential to enhance sensor sensitivity. These metasurfaces can be used instead of color filters to distinguish primary colors, and unlike color filters, they can direct almost all of the incident light to the photodetectors, thereby maximizing the detectable light power. This review focuses on such metasurface-based color splitters enabling high-sensitivity color-image sensors. Their underlying principles are introduced with a focus on dispersion engineering. Then, their capabilities as optical elements are assessed on the basis of our recent findings. Finally, it is discussed how they can be used to create high-sensitivity color-image sensors.
期刊介绍:
Optical Review is an international journal published by the Optical Society of Japan. The scope of the journal is:
General and physical optics;
Quantum optics and spectroscopy;
Information optics;
Photonics and optoelectronics;
Biomedical photonics and biological optics;
Lasers;
Nonlinear optics;
Optical systems and technologies;
Optical materials and manufacturing technologies;
Vision;
Infrared and short wavelength optics;
Cross-disciplinary areas such as environmental, energy, food, agriculture and space technologies;
Other optical methods and applications.