Hadiqa Bibi, Mushtaq Ahmad, Ahmed I. Osman, Abdulaziz Abdullah Alsahli, Mamoona Munir, Ala’a H. Al-Muhtaseb, David W. Rooney, Shazia Sultana
{"title":"利用新型非食用油种子生产生物柴油的高活性、可回收氧化铬纳米催化剂的绿色合成","authors":"Hadiqa Bibi, Mushtaq Ahmad, Ahmed I. Osman, Abdulaziz Abdullah Alsahli, Mamoona Munir, Ala’a H. Al-Muhtaseb, David W. Rooney, Shazia Sultana","doi":"10.1111/gcbb.13140","DOIUrl":null,"url":null,"abstract":"<p>This study explores the sustainable production of biodiesel from nonedible <i>Phyllanthus maderaspatensis</i> seed oil (highest oil content of 35%, FFA 0.87 mg/KOH), utilizing an innovative green synthesis approach for chromium oxide nanoparticles derived from the waste fruit parts of Aubergine for the very first time in the current work. In pursuit of alternatives to fossil fuels, our research underscores the environmental and socio-economic benefits of biofuels, particularly in reducing greenhouse gas emissions. The optimized process yielded a 92% biodiesel conversion under conditions of a 9:1 methanol-to-oil ratio, 0.135 wt.% catalyst concentration, and a reaction duration of 150 min at 80°C. Comprehensive analysis techniques, including XRD, FTIR, SEM, EDX, Zeta analysis, differential reflectance spectroscopy (DRS), GC–MS, and NMR (<sup>1</sup>H, <sup>13</sup>C), were employed to characterize the synthesized nanocatalyst and biodiesel product. The biodiesel's fuel properties, such as acid value, fire point, pour point, viscosity, kinematic density, sulfur content, and cloud point, were rigorously tested, demonstrating compliance with international standards (ASTM D-6571, EN 14214, and GB/T 20828-2007). The use of <i>P. maderaspatensis</i> seed oil, an economical and environmentally friendly feedstock, in conjunction with a cost-effective nanocatalyst, presents a viable pathway for the sustainable and scalable production of biodiesel. This study contributes to the advancement of bioproducts for a sustainable bioeconomy by demonstrating an integrated approach to bioenergy production that leverages biotechnological innovations and addresses both environmental and socio-economic dimensions.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 5","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13140","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of highly active and recyclable chromium oxide nanocatalyst for biodiesel production from novel nonedible oil seeds\",\"authors\":\"Hadiqa Bibi, Mushtaq Ahmad, Ahmed I. Osman, Abdulaziz Abdullah Alsahli, Mamoona Munir, Ala’a H. Al-Muhtaseb, David W. Rooney, Shazia Sultana\",\"doi\":\"10.1111/gcbb.13140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the sustainable production of biodiesel from nonedible <i>Phyllanthus maderaspatensis</i> seed oil (highest oil content of 35%, FFA 0.87 mg/KOH), utilizing an innovative green synthesis approach for chromium oxide nanoparticles derived from the waste fruit parts of Aubergine for the very first time in the current work. In pursuit of alternatives to fossil fuels, our research underscores the environmental and socio-economic benefits of biofuels, particularly in reducing greenhouse gas emissions. The optimized process yielded a 92% biodiesel conversion under conditions of a 9:1 methanol-to-oil ratio, 0.135 wt.% catalyst concentration, and a reaction duration of 150 min at 80°C. Comprehensive analysis techniques, including XRD, FTIR, SEM, EDX, Zeta analysis, differential reflectance spectroscopy (DRS), GC–MS, and NMR (<sup>1</sup>H, <sup>13</sup>C), were employed to characterize the synthesized nanocatalyst and biodiesel product. The biodiesel's fuel properties, such as acid value, fire point, pour point, viscosity, kinematic density, sulfur content, and cloud point, were rigorously tested, demonstrating compliance with international standards (ASTM D-6571, EN 14214, and GB/T 20828-2007). The use of <i>P. maderaspatensis</i> seed oil, an economical and environmentally friendly feedstock, in conjunction with a cost-effective nanocatalyst, presents a viable pathway for the sustainable and scalable production of biodiesel. This study contributes to the advancement of bioproducts for a sustainable bioeconomy by demonstrating an integrated approach to bioenergy production that leverages biotechnological innovations and addresses both environmental and socio-economic dimensions.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13140\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13140\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13140","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Green synthesis of highly active and recyclable chromium oxide nanocatalyst for biodiesel production from novel nonedible oil seeds
This study explores the sustainable production of biodiesel from nonedible Phyllanthus maderaspatensis seed oil (highest oil content of 35%, FFA 0.87 mg/KOH), utilizing an innovative green synthesis approach for chromium oxide nanoparticles derived from the waste fruit parts of Aubergine for the very first time in the current work. In pursuit of alternatives to fossil fuels, our research underscores the environmental and socio-economic benefits of biofuels, particularly in reducing greenhouse gas emissions. The optimized process yielded a 92% biodiesel conversion under conditions of a 9:1 methanol-to-oil ratio, 0.135 wt.% catalyst concentration, and a reaction duration of 150 min at 80°C. Comprehensive analysis techniques, including XRD, FTIR, SEM, EDX, Zeta analysis, differential reflectance spectroscopy (DRS), GC–MS, and NMR (1H, 13C), were employed to characterize the synthesized nanocatalyst and biodiesel product. The biodiesel's fuel properties, such as acid value, fire point, pour point, viscosity, kinematic density, sulfur content, and cloud point, were rigorously tested, demonstrating compliance with international standards (ASTM D-6571, EN 14214, and GB/T 20828-2007). The use of P. maderaspatensis seed oil, an economical and environmentally friendly feedstock, in conjunction with a cost-effective nanocatalyst, presents a viable pathway for the sustainable and scalable production of biodiesel. This study contributes to the advancement of bioproducts for a sustainable bioeconomy by demonstrating an integrated approach to bioenergy production that leverages biotechnological innovations and addresses both environmental and socio-economic dimensions.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.