光伏文献调查(第 191 号)

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Ziv Hameiri
{"title":"光伏文献调查(第 191 号)","authors":"Ziv Hameiri","doi":"10.1002/pip.3809","DOIUrl":null,"url":null,"abstract":"<p>To help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Basnet R, Yan D, Kang D, <i>et al</i>. <b>Current status and challenges for hole-selective poly-silicon based passivating contacts.</b> <i>Applied Physics Reviews</i> 2024; <b>11</b>(1): 011311.</p><p>Quirk J, Rothmann M, Li W, <i>et al</i>. <b>Grain boundaries in polycrystalline materials for energy applications: First principles modeling and electron microscopy.</b> <i>Applied Physics Reviews</i> 2024; <b>11</b>(1): 011308.</p><p>Brinkmann KO, Wang P, Lang FL, <i>et al</i>. <b>Perovskite-organic tandem solar cells.</b> <i>Nature Reviews Materials</i> 2024; <b>9</b>(3): 202-217.</p><p>Roose B, Dey K, Fitzsimmons MR, <i>et al</i>. <b>Electrochemical impedance spectroscopy of all-perovskite tandem solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 442-453.</p><p>Kumar R, Puranik VE, Gupta R. <b>Application of electroluminescence imaging to distinguish ohmic and non ohmic shunting in inaccessible cells within a PV module.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 296-304.</p><p>Mahadevan S, Liu T, Pratik SM, <i>et al</i>. <b>Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2393.</p><p>Chojniak D, Steiner M, Reichmuth SK, <i>et al</i>. <b>Outdoor measurements of a full-size bifacial Pero/Si tandem module under different spectral conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(4): 219-231.</p><p>Ma F-J, Wang S, Yi C, <i>et al</i>. <b>A collaborative framework for unifying typical multidimensional solar cell simulations – Part I. Ten common simulation steps and representing variables.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 330-345.</p><p>Tahir S, Saeed R, Ashfaq A, <i>et al</i>. <b>Optical modeling and characterization of bifacial SiN</b><sub><b>x</b></sub><b>/AlO</b><sub><b>x</b></sub> <b>dielectric layers for surface passivation and antireflection in PERC.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(2): 63-72.</p><p>Li B, Hansen CW, Chen X, <i>et al</i>. <b>A robust I–V curve correction procedure for degraded photovoltaic modules.</b> <i>Renewable Energy</i> 2024; <b>224</b>: 120108.</p><p>Zandi S, Hameiri Z, Mahboubi Soufiani A, <i>et al</i>. <b>Simplified method for the conversion of luminescence signals from silicon wafers and solar cells into implied voltages.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>:112716.</p><p>Sun B, Lu L, Chen J, <i>et al</i>. <b>Full-spectrum radiative cooling for enhanced thermal and electrical performance of bifacial solar photovoltaic modules: A nationwide quantitative analysis.</b> <i>Applied Energy</i> 2024; <b>362</b>: 123037.</p><p>Min B, Noack P, Wattenberg B, <i>et al</i>. <b>Wet-chemically grown interfacial oxide for passivating contacts fabricated with an industrial inline processing system.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 233-239.</p><p>Sinha A, Dasgupta S, Rohatgi A, <i>et al</i>. <b>Rapid thermal annealing effects on passivation quality of p-TOPCon silicon solar cells.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 226-232.</p><p>Arriaga Arruti O, Gnocchi L, Jeangros Q, <i>et al</i>. <b>Potential-induced degradation in bifacial silicon heterojunction solar modules: Insights and mitigation strategies.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 304-316.</p><p>Chen W, Liu W, Yu Y, <i>et al</i>. <b>Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 199-211.</p><p>Unsur V. <b>Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(4): 267-275.</p><p>Bonilla RS, Al-Dhahir I, Niu X, <i>et al</i>. <b>Enhancing dielectric-silicon interfaces through surface electric fields during firing.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112799.</p><p>Deng S, Cai YL, Roemer U, <i>et al</i>. <b>Mitigating parasitic absorption in poly-Si contacts for TOPCon solar cells: A comprehensive review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112704.</p><p>Hossain MJ, Sun MD, Davis KO. <b>Photon management in silicon photovoltaic cells: A critical review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112715.</p><p>Ma S, Liao B, Du DX, <i>et al</i>. <b>Bi-layer in-situ phosphorus doped poly-Si films by PECVD for blistering-free high-efficiency industrial TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112771.</p><p>Padhamnath P, Choi W-J, De Luna G, <i>et al</i>. <b>Design and development of front and back contact solar cells with selective poly-Si passivating contact on the front and local Al contact on the rear.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112759.</p><p>Rougieux FE, Sen C, Abbott M, <i>et al</i>. <b>Light-activated surface passivation for more efficient silicon heterojunction solar cells: Origin, physics and stability.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112789.</p><p>Xie Z, Chen S, Pei YL, <i>et al</i>. <b>Enhanced efficiency in two-terminal all-perovskite tandem solar cells via binary functional high polymer doping strategy.</b> <i>Chemical Engineering Journal</i> 2024; <b>482</b>: 148638.</p><p>Bin Jahangir J, Patel MT, Asadpour R, <i>et al</i>. <b>Planet-scale energy yield potential of next-generation bifacial, multiterminal, perovskite-silicon tandem solar farms.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 363-371.</p><p>Alberi K, Berry JJ, Cordell JJ, <i>et al</i>. <b>A roadmap for tandem photovoltaics.</b> <i>Joule</i> 2024; <b>8</b>(3): 658-692.</p><p>Chime U, Duan W, Lambertz A, <i>et al</i>. <b>Thin silicon heterojunction solar cells in perovskite shadow: Bottom cell prospective.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112813.</p><p>Hasan SAU, Zahid MA, Park S, <i>et al</i>. <b>Stability challenges for a highly efficient perovskite/silicon tandem solar cell: A review.</b> <i>Solar RRL</i> 2024; <b>8</b>(6): 2300967.</p><p>Li ML, Li ZZ, Fu HT, <i>et al</i>. <b>Molecularly engineered self-assembled monolayers as effective hole-selective layers for organic solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(3): 1306-1312.</p><p>Jiang ER, List M, Jamali A, <i>et al</i>. <b>Over 1000 V DC voltage from organic solar mini-modules.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(3): 908-910.</p><p>Sun XK, Lv J, Wang F, <i>et al</i>. <b>Efficiency boost in all-small-molecule organic solar cells: Insights from the re-ordering kinetics.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>(3): 2302731.</p><p>Tian GS, Li YL, Chen Y, <i>et al</i>. <b>Relocating selenium alkyl chain enables efficient all-small molecule organic solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>482</b>: 149149.</p><p>Zhang SM, Xue ZY, He ZL, <i>et al</i>. <b>Efficient organic solar cells enabled by sustainable and synergetic device engineering.</b> <i>Chemical Engineering Journal</i> 2024; <b>481</b>: 148728.</p><p>Aitchison CM, McCulloch I. <b>Organic photovoltaic materials for solar fuel applications: A perfect match?</b> <i>Chemistry of Materials</i> 2024; <b>36</b>(4): 1781-1792.</p><p>Zhang WC, Yue YC, Yang RS, <i>et al</i>. <b>A high-efficiency and stable organic solar cell with balanced crystallization kinetics.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(6): 2182-2192.</p><p>Lee JW, Lee HG, Oh ES, <i>et al</i>. <b>Rigid- and soft-block-copolymerized conjugated polymers enable high-performance intrinsically stretchable organic solar cells.</b> <i>Joule</i> 2024; <b>8</b>(1): 204-223.</p><p>Li Y, Wang J, Yan C, <i>et al</i>. <b>Optical and electrical losses in semitransparent organic photovoltaics.</b> <i>Joule</i> 2024; <b>8</b>(2): 527-541.</p><p>Suzuki T, Marumoto K. <b>Spin-dependent recombination affected by post-annealing of organic photovoltaic devices.</b> <i>Journal of Applied Physics</i> 2024; <b>135</b>(7): 075002.</p><p>Cui T, Huang Z, Zhang Y, <i>et al</i>. <b>A “belt” strategy for promoting the 3D network packing of fully non-fused ring acceptors in organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2024; <b>12</b>: 6996-7004.</p><p>Yu RN, Li S, Yuan HY, <i>et al</i>. <b>Research advances of nonfused ring acceptors for organic solar cells.</b> <i>Journal of Physical Chemistry Letters</i> 2024; <b>15</b>(10): 2781-2803.</p><p>He Y, Huo L, Zheng B. <b>Advances of batch-variation control for photovoltaic polymers.</b> <i>Nano Energy</i> 2024; <b>123</b>: 109397.</p><p>Ma XH, Li T, Song G, <i>et al</i>. <b>Chemisorption-induced robust and homogeneous tungsten disulfide interlayer enables stable PEDOT-free organic solar cells with over 19% efficiency.</b> <i>Nano Letters</i> 2024; <b>24</b>(10): 3051-3058.</p><p>Wang Z, Guo Y, Liu XZ, <i>et al</i>. <b>The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1212.</p><p>Xu LY, Wang W, Yang XR, <i>et al</i>. <b>Real-time monitoring polymerization degree of organic photovoltaic materials toward no batch-to-batch variations in device performance.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1248.</p><p>Kaliamurthy AK, Asiam FK, Yadagiri B, <i>et al</i>. <b>Effect of interfacial polarization on the trap passivation and dielectric constant of SrF</b><sub><b>2</b></sub><b>/TiO</b><sub><b>2</b></sub> <b>for dye-sensitized solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(5): 1983-1992.</p><p>Liu BT, Syu JC, Mizota I, <i>et al</i>. <b>Hydrophilic ligand exchange induces improved upconversion nanoparticle incorporation in dye-sensitized solar cells with efficiency exceeding 8% in a low-temperature fabrication process.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(3): 965-973.</p><p>Singh A, Singh AK, Dixit R, <i>et al</i>. <b>Visible, far-red, and near-infrared active unsymmetrical squaraine dyes based on extended conjugation within the polymethine framework for dye-sensitized solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(4): 1461-1475.</p><p>Kimura R, Oka C, Hata S, <i>et al</i>. <b>The effects of periodic textured substrate to control diffusion angle on the conversion efficiency of dye-sensitized solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(3): 03SP93.</p><p>Chauhan R, Srivastava A, Shirage PM, <i>et al</i>. <b>Innovating dye-sensitized solar cells through novel microalgal and cyanobacterial species extricated dyes: A sustainable tack for material scarce earth.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112369.</p><p>Roy P, Vats AK, Tang LJ, <i>et al</i>. <b>Controlling adsorption of two dyes on TiO</b><sub><b>2</b></sub> <b>surface to improve the efficiency of see-through dye-sensitized solar cells.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112339.</p><p>Santos F, Ivanou D, Mendes A. <b>Solid-state monolithic dye-sensitized solar cell exceeding 10% efficiency using a copper-complex hole transport material and a carbon counter-electrode.</b> <i>Solar RRL</i> 2024; <b>8</b>(2): 2300574.</p><p>Balaguera EH, Bisquert J. <b>Accelerating the assessment of hysteresis in perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 478-486.</p><p>Chang BH, Wang L, Li H, <i>et al</i>. <b>Phase-pure 2D/3D tin-based perovskite films for solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 363-372.</p><p>Li C, Zhang K, Maiti S, <i>et al</i>. <b>Tailoring the dimensionality of 2D/3D heterojunctions for inverted perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; 779-788.</p><p>Flick AC, Rolston N, Dauskardt RH. <b>Indirect liftoff mechanism for high-throughput, single-source laser scribing for perovskite solar modules.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2303175.</p><p>Guesnay Q, Sahli F, Artuk K, <i>et al</i>. <b>Pizza oven processing of organohalide perovskites (POPOP): A simple, versatile and efficient vapor deposition method.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2303423.</p><p>Kamaraki C, Klug MT, Lim VJY, <i>et al</i>. <b>Charting the irreversible degradation modes of low bandgap Pb-Sn perovskite compositions for de-risking practical industrial development.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2302916.</p><p>Qiu SD, Majewski M, Dong LR, <i>et al</i>. <b>In situ probing the crystallization kinetics in gas-quenching-assisted coating of perovskite films.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>(10): 2303210.</p><p>Liu M, Wang Y, Lu C, <i>et al</i>. <b>Localized oxidation embellishing strategy enables high-performance perovskite solar cells.</b> <i>Angewandte Chemie - International Edition</i> 2024; <b>63</b>(10): e202318621.</p><p>Azam M, Ke Z, Luo J, <i>et al</i>. <b>Additive engineering enabled non-radiative defect passivation with improved moisture-resistance in efficient and stable perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>483</b>: 149424.</p><p>Lu CY, Li XD, Yuan HB, <i>et al</i>. <b>Introducing back-surface field for efficient inverted CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>480</b>: 147267.</p><p>Sun SH, He BL, Wang ZY, <i>et al</i>. <b>Integration of SWCNT and WO</b><sub><b>3</b></sub> <b>for efficient charge extraction in all-inorganic perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>483</b>: 149425.</p><p>Zheng YT, Li YR, Zhuang RS, <i>et al</i>. <b>Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(3): 1153-1162.</p><p>Zhang G, Zheng Y, Wang H, <i>et al</i>. <b>Shellac protects perovskite solar cell modules under real-world conditions.</b> <i>Joule</i> 2024; <b>8</b>(2): 496-508.</p><p>Iqbal Z, Félix R, Musiienko A, <i>et al</i>. <b>Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(7): 4642-4651.</p><p>Agresti A, Di Giacomo F, Pescetelli S, <i>et al</i>. <b>Scalable deposition techniques for large-area perovskite photovoltaic technology: A multi-perspective review.</b> <i>Nano Energy</i> 2024; <b>122</b>: 109317.</p><p>Zhou Q, Liu B, Chen Y, <i>et al</i>. <b>Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109512.</p><p>Chen P, Xiao Y, Hu JT, <i>et al</i>. <b>Multifunctional ytterbium oxide buffer for perovskite solar cells.</b> <i>Nature</i> 2024; <b>625</b>(7995): 516.</p><p>Aalbers GJW, van der Pol TPA, Datta K, <i>et al</i>. <b>Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1276.</p><p>Khadka DB, Shirai Y, Yanagida M, <i>et al</i>. <b>Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 882.</p><p>Kirmani AR, Byers TA, Ni ZY, <i>et al</i>. <b>Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 696.</p><p>Said AA, Aydin E, Ugur E, <i>et al</i>. <b>Sublimed C60 for efficient and repeatable perovskite-based solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 708.</p><p>Shi P, Xu J, Yavuz I, <i>et al</i>. <b>Strain regulates the photovoltaic performance of thick-film perovskites.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2579.</p><p>Uddin MA, Rana PJS, Ni ZY, <i>et al</i>. <b>Iodide manipulation using zinc additives for efficient perovskite solar minimodules.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1355.</p><p>Enkhbat T, Otgontamir N, Kim J. <b>Impact of chemical source selection on aqueous spray-deposited CZTSSe solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(5): 1748-1755.</p><p>Barragán Sánchez-Lanuza M, Lillo-Bravo I, Moreno-Tejera S, <i>et al</i>. <b>Experimental CIGS technology performance under low concentration photovoltaic conditions.</b> <i>Journal of Cleaner Production</i> 2024; <b>446</b>: 141384.</p><p>Chen X, Zhao Y, Ahmad N, <i>et al</i>. <b>Achieving high open-circuit voltage in efficient kesterite solar cells via lanthanide europium ion induced carrier lifetime enhancement.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109448.</p><p>Chauhan P, Agarwal S, Srivastava V, <i>et al</i>. <b>Impact on generation and recombination rate in Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>(CZTS) solar cell for Ag</b><sub><b>2</b></sub><b>S and In</b><sub><b>2</b></sub><b>Se</b><sub><b>3</b></sub> <b>buffer layers with CuSbS</b><sub><b>2</b></sub> <b>back surface field layer.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 156-171.</p><p>Debono A, L'Hostis H, Rebai A, <i>et al</i>. <b>Synergistic effect between molybdenum back contact and CIGS absorber in the degradation of solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 137-155.</p><p>Zhang C, Ji J, Wang C, <i>et al</i>. <b>Annual analysis and comparison of the comprehensive performance of a CdTe PV ventilated window integrated with vacuum glazing in different climate regions.</b> <i>Renewable Energy</i> 2024; <b>223</b>: 120029.</p><p>Agrawal S, De Souza DO, Balasubramanian C, <i>et al</i>. <b>Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112719.</p><p>He Y, Zhao C, Lu Z, <i>et al</i>. <b>Optimizing the window layer for achieving over 10% efficient Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112798.</p><p>Kwok CKG, Tangara H, Masuko N, <i>et al</i>. <b>Effects of quasi-fermi level splitting and band tail states on open circuit voltage towards high-efficiency Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112767.</p><p>Liu XL, Abbas A, Togay M, <i>et al</i>. <b>The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112717.</p><p>Nishinaga J, Kamikawa Y, Sugaya T, <i>et al</i>. <b>Comparison of polycrystalline and epitaxial Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells with conversion efficiencies of more than 21%.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112791.</p><p>Phillips AB, Friedl JD, Subedi KK, <i>et al</i>. <b>Approach to determining the limiting recombination mechanism in CdTe-based solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>266</b>: 112689.</p><p>Tiede DO, Romero-Pérez C, Koch KA, <i>et al</i>. <b>Effect of connectivity on the carrier transport and recombination dynamics of perovskite quantum-dot networks.</b> <i>Acs Nano</i> 2024; <b>18</b>(3): 2325-2334.</p><p>Li C, Yao D, Dong P, <i>et al</i>. <b>Synergetic modification on buried and upper surfaces of perovskites with nitrogen-doped carbon quantum dots for efficient and stable solar cells.</b> <i>Applied Surface Science</i> 2024; <b>658</b>: 159848.</p><p>Ding XB, Wen X, Kawata Y, <i>et al</i>. <b>In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics.</b> <i>Nanoscale</i> 2024; <b>16</b>(10): 5115-5122.</p><p>Li ZR, Wu HF, Wang RX. <b>Actuality and technology prospect of using perovskite quantum dot solar cells as the photovoltaic roof.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112359.</p><p>Xiao G, Wang X, Liang T, <i>et al</i>. <b>Improved charge separation by anatase TiO</b><sub><b>2</b></sub> <b>nanorod arrays for efficient solid-state PbS quantum-dot-sensitized solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112769.</p><p>Hu ZH, Gao Y, Ji SY, <i>et al</i>. <b>Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122709.</p><p>Mercier TM, Sabet A, Rahman T. <b>Vision transformer models to measure solar irradiance using sky images in temperate climates.</b> <i>Applied Energy</i> 2024; <b>362</b>: 122967.</p><p>Mouhib E, Fernández-Solas A, Pérez-Higueras PJ, <i>et al</i>. <b>Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122660.</p><p>Varo-Martínez M, Fernández-Ahumada LM, Ramírez-Faz JC, <i>et al</i>. <b>Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122952.</p><p>Vaziri Rad MA, Forootan Fard H, Khazanedari K, <i>et al</i>. <b>A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods.</b> <i>Applied Energy</i> 2024; <b>360</b>: 122715.</p><p>Zhang K, Wang D, Chen M, <i>et al</i>. <b>Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122839.</p><p>Sun HJ, Fan SY, Cao SX, <i>et al</i>. <b>Quantitative modeling and validation of the impact of border dust on photovoltaic panels: A piecewise single diode approach.</b> <i>Energy</i> 2024; <b>291</b>: 130285.</p><p>Yang H, Ding K, Chen X, <i>et al</i>. <b>Fast simulation modeling and multiple-PS fault diagnosis of the PV array based on I–V curve conversion.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117965.</p><p>Ray B, Lasantha D, Beeravalli V, <i>et al</i>. <b>A comprehensive framework for effective long-short term solar yield forecasting.</b> <i>Energy Conversion and Management: X</i> 2024; <b>22</b>: 100535.</p><p>Elamim A, Sarikh S, Hartiti B, <i>et al</i>. <b>Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate.</b> <i>Energy Reports</i> 2024; <b>11</b>: 2346-2359.</p><p>Younis A, Rjafallah A, Cotfas PA, <i>et al</i>. <b>Dust impact on electrical and thermal photovoltaic performance: Insights from field and laboratory experiments.</b> <i>Energy Reports</i> 2024; <b>11</b>: 2099-2110.</p><p>Nedaei A, Eskandari A, Milimonfared J, <i>et al</i>. <b>Fault resistance estimation for line-line fault in photovoltaic arrays using regression-based dense neural network.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>133</b>: 108067.</p><p>De SB, Shiradkar N, Kottantharayil A. <b>Improved cleaning event detection methodology including partial cleaning by wind applied to different PV-SCADA datasets for soiling loss estimation.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 344-353.</p><p>Willers G, Naumann V, Holzlöhner R, <i>et al</i>. <b>Analysis of threshold conditions for cementation of soiling on PV modules and telescope mirrors.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 330-336.</p><p>Tanguturi J, Keerthipati S. <b>Power balancing strategy for cascaded H-bridge inverter in a grid-connected photovoltaic system under asymmetrical operating conditions.</b> <i>IEEE Transactions on Industrial Electronics</i> 2024; <b>71</b>(6): 5853-5862.</p><p>Deville L, Theristis M, King BH, <i>et al</i>. <b>Open-source photovoltaic model pipeline validation against well-characterized system data.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 291-303.</p><p>Hacke P, Spataru S, Habersberger B, <i>et al</i>. <b>Field-representative evaluation of PID-polarization in TOPCon PV modules by accelerated stress testing.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 346-355.</p><p>Abdulla H, Sleptchenko A, Nayfeh A. <b>Photovoltaic systems operation and maintenance: A review and future directions.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>195</b>: 114342.</p><p>Alkharusi T, Huang G, Markides CN. <b>Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance.</b> <i>Renewable Energy</i> 2024; <b>220</b>: 119422.</p><p>Demir H. <b>Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network.</b> <i>Renewable Energy</i> 2024; <b>222</b>: 120017.</p><p>Ma C, Wu RZ, Liu Z, <i>et al</i>. <b>Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment.</b> <i>Renewable Energy</i> 2024; <b>222</b>: 119890.</p><p>Micheli L, Muller M, Theristis M, <i>et al</i>. <b>Quantifying the impact of inverter clipping on photovoltaic performance and soiling losses.</b> <i>Renewable Energy</i> 2024; <b>225</b>: 120317.</p><p>Arefeen S, Dallas T. <b>Potential of tensegrity racking structures for enhanced bifacial PV array performance.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112344.</p><p>Baricchio M, Korevaar M, Babal P, <i>et al</i>. <b>Modelling of bifacial photovoltaic farms to evaluate the profitability of East/West vertical configuration.</b> <i>Solar Energy</i> 2024; <b>272</b>: 112457.</p><p>Guo B, Javed W. <b>Effect of incidence angle on PV soiling loss.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112298.</p><p>Khan MZ, Abuelseoud A, Lange K, <i>et al</i>. <b>Correlation between laboratory and outdoor soiling experiments with anti-soiling coatings.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112751.</p><p>Louwen A, Lindig S, Chowdhury G, <i>et al</i>. <b>Climate- and technology-dependent performance loss rates in a large commercial photovoltaic monitoring dataset.</b> <i>Solar RRL</i> 2024; <b>8</b>: 2300653.</p><p>Jouttijärvi S, Karttunen L, Ranta S, <i>et al</i>. <b>Techno-economic analysis on optimizing the value of photovoltaic electricity in a high-latitude location.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122924.</p><p>Kandpal B, Backe S, Crespo del Granado P. <b>Power purchase agreements for plus energy neighbourhoods: Financial risk mitigation through predictive modelling and bargaining theory.</b> <i>Applied Energy</i> 2024; <b>358</b>: 122589.</p><p>Loni A, Asadi S. <b>A data-driven approach to quantify social vulnerability to power outages: California case study.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122739.</p><p>Meng L, Yang X, Zhu J, <i>et al</i>. <b>Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty.</b> <i>Applied Energy</i> 2024; <b>362</b>: 122846.</p><p>Lyu Y, He Y, Li S, <i>et al</i>. <b>Impact of grid connection cost channeling mechanisms on the development of distributed photovoltaic: The case of China.</b> <i>Energy Policy</i> 2024; <b>187</b>: 114041.</p><p>Wang ZR, Hao Z, Jia XF, <i>et al</i>. <b>Unravelling spatiotemporal patterns of solar photovoltaic plants development in China in the 21<sup>st</sup> century.</b> <i>Environmental Research Letters</i> 2024; <b>19</b>(3): 034005.</p><p>Warmann E, Jenerette GD, Barron-Gafford GA. <b>Agrivoltaic system design tools for managing trade-offs between energy production, crop productivity and water consumption.</b> <i>Environmental Research Letters</i> 2024; <b>19</b>(3): 034046.</p><p>Kumar BS, Kunar BM, Murthy CSN. <b>An adaptive modeling for bifacial solar module levelized cost and performance analysis for mining application.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 186-198.</p><p>Heidari MR, Heravi G. <b>Development of flexible supportive policy with real options for renewable energy projects: Case of photovoltaic systems.</b> <i>Renewable Energy</i> 2024; <b>225</b>: 120326.</p><p>Yuan LY, Nain P, Kothari M, <i>et al</i>. <b>Material intensity and carbon footprint of crystalline silicon module assembly over time.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112336.</p><p>Nyffenegger R, Boukhatmi Ä, Radavičius T, <i>et al</i>. <b>How circular is the European photovoltaic industry? Practical insights on current circular economy barriers, enablers, and goals.</b> <i>Journal of Cleaner Production</i> 2024; <b>448</b>: 141376.</p><p>Preet S, Smith ST. <b>A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook.</b> <i>Journal of Cleaner Production</i> 2024; <b>448</b>: 141661.</p><p>Iakovou E, Pistikopoulos EN, Walzberg J, <i>et al</i>. <b>Next-generation reverse logistics networks of photovoltaic recycling: Perspectives and challenges.</b> <i>Solar Energy</i> 2024; <b>271</b>: 112329.</p><p>Khetri M, Gupta MC. <b>Recycling of silver from silicon solar cells by laser debonding.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112381.</p><p>Ngagoum Ndalloka Z, Vijayakumar Nair H, Alpert S, <i>et al</i>. <b>Solar photovoltaic recycling strategies.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112379.</p><p>Click N, Teknetzi I, Tam EPL, <i>et al</i>. <b>Innovative recycling of high purity silver from silicon solar cells by acid leaching and ultrasonication.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112834.</p><p>Wang J, Feng Y, He Y. <b>The research progress on recycling and resource utilization of waste crystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112804.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"417-422"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3809","citationCount":"0","resultStr":"{\"title\":\"Photovoltaics literature survey (No. 191)\",\"authors\":\"Ziv Hameiri\",\"doi\":\"10.1002/pip.3809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Basnet R, Yan D, Kang D, <i>et al</i>. <b>Current status and challenges for hole-selective poly-silicon based passivating contacts.</b> <i>Applied Physics Reviews</i> 2024; <b>11</b>(1): 011311.</p><p>Quirk J, Rothmann M, Li W, <i>et al</i>. <b>Grain boundaries in polycrystalline materials for energy applications: First principles modeling and electron microscopy.</b> <i>Applied Physics Reviews</i> 2024; <b>11</b>(1): 011308.</p><p>Brinkmann KO, Wang P, Lang FL, <i>et al</i>. <b>Perovskite-organic tandem solar cells.</b> <i>Nature Reviews Materials</i> 2024; <b>9</b>(3): 202-217.</p><p>Roose B, Dey K, Fitzsimmons MR, <i>et al</i>. <b>Electrochemical impedance spectroscopy of all-perovskite tandem solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 442-453.</p><p>Kumar R, Puranik VE, Gupta R. <b>Application of electroluminescence imaging to distinguish ohmic and non ohmic shunting in inaccessible cells within a PV module.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 296-304.</p><p>Mahadevan S, Liu T, Pratik SM, <i>et al</i>. <b>Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2393.</p><p>Chojniak D, Steiner M, Reichmuth SK, <i>et al</i>. <b>Outdoor measurements of a full-size bifacial Pero/Si tandem module under different spectral conditions.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(4): 219-231.</p><p>Ma F-J, Wang S, Yi C, <i>et al</i>. <b>A collaborative framework for unifying typical multidimensional solar cell simulations – Part I. Ten common simulation steps and representing variables.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 330-345.</p><p>Tahir S, Saeed R, Ashfaq A, <i>et al</i>. <b>Optical modeling and characterization of bifacial SiN</b><sub><b>x</b></sub><b>/AlO</b><sub><b>x</b></sub> <b>dielectric layers for surface passivation and antireflection in PERC.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(2): 63-72.</p><p>Li B, Hansen CW, Chen X, <i>et al</i>. <b>A robust I–V curve correction procedure for degraded photovoltaic modules.</b> <i>Renewable Energy</i> 2024; <b>224</b>: 120108.</p><p>Zandi S, Hameiri Z, Mahboubi Soufiani A, <i>et al</i>. <b>Simplified method for the conversion of luminescence signals from silicon wafers and solar cells into implied voltages.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>:112716.</p><p>Sun B, Lu L, Chen J, <i>et al</i>. <b>Full-spectrum radiative cooling for enhanced thermal and electrical performance of bifacial solar photovoltaic modules: A nationwide quantitative analysis.</b> <i>Applied Energy</i> 2024; <b>362</b>: 123037.</p><p>Min B, Noack P, Wattenberg B, <i>et al</i>. <b>Wet-chemically grown interfacial oxide for passivating contacts fabricated with an industrial inline processing system.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 233-239.</p><p>Sinha A, Dasgupta S, Rohatgi A, <i>et al</i>. <b>Rapid thermal annealing effects on passivation quality of p-TOPCon silicon solar cells.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 226-232.</p><p>Arriaga Arruti O, Gnocchi L, Jeangros Q, <i>et al</i>. <b>Potential-induced degradation in bifacial silicon heterojunction solar modules: Insights and mitigation strategies.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 304-316.</p><p>Chen W, Liu W, Yu Y, <i>et al</i>. <b>Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 199-211.</p><p>Unsur V. <b>Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(4): 267-275.</p><p>Bonilla RS, Al-Dhahir I, Niu X, <i>et al</i>. <b>Enhancing dielectric-silicon interfaces through surface electric fields during firing.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112799.</p><p>Deng S, Cai YL, Roemer U, <i>et al</i>. <b>Mitigating parasitic absorption in poly-Si contacts for TOPCon solar cells: A comprehensive review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112704.</p><p>Hossain MJ, Sun MD, Davis KO. <b>Photon management in silicon photovoltaic cells: A critical review.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112715.</p><p>Ma S, Liao B, Du DX, <i>et al</i>. <b>Bi-layer in-situ phosphorus doped poly-Si films by PECVD for blistering-free high-efficiency industrial TOPCon solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112771.</p><p>Padhamnath P, Choi W-J, De Luna G, <i>et al</i>. <b>Design and development of front and back contact solar cells with selective poly-Si passivating contact on the front and local Al contact on the rear.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112759.</p><p>Rougieux FE, Sen C, Abbott M, <i>et al</i>. <b>Light-activated surface passivation for more efficient silicon heterojunction solar cells: Origin, physics and stability.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112789.</p><p>Xie Z, Chen S, Pei YL, <i>et al</i>. <b>Enhanced efficiency in two-terminal all-perovskite tandem solar cells via binary functional high polymer doping strategy.</b> <i>Chemical Engineering Journal</i> 2024; <b>482</b>: 148638.</p><p>Bin Jahangir J, Patel MT, Asadpour R, <i>et al</i>. <b>Planet-scale energy yield potential of next-generation bifacial, multiterminal, perovskite-silicon tandem solar farms.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 363-371.</p><p>Alberi K, Berry JJ, Cordell JJ, <i>et al</i>. <b>A roadmap for tandem photovoltaics.</b> <i>Joule</i> 2024; <b>8</b>(3): 658-692.</p><p>Chime U, Duan W, Lambertz A, <i>et al</i>. <b>Thin silicon heterojunction solar cells in perovskite shadow: Bottom cell prospective.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112813.</p><p>Hasan SAU, Zahid MA, Park S, <i>et al</i>. <b>Stability challenges for a highly efficient perovskite/silicon tandem solar cell: A review.</b> <i>Solar RRL</i> 2024; <b>8</b>(6): 2300967.</p><p>Li ML, Li ZZ, Fu HT, <i>et al</i>. <b>Molecularly engineered self-assembled monolayers as effective hole-selective layers for organic solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(3): 1306-1312.</p><p>Jiang ER, List M, Jamali A, <i>et al</i>. <b>Over 1000 V DC voltage from organic solar mini-modules.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(3): 908-910.</p><p>Sun XK, Lv J, Wang F, <i>et al</i>. <b>Efficiency boost in all-small-molecule organic solar cells: Insights from the re-ordering kinetics.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>(3): 2302731.</p><p>Tian GS, Li YL, Chen Y, <i>et al</i>. <b>Relocating selenium alkyl chain enables efficient all-small molecule organic solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>482</b>: 149149.</p><p>Zhang SM, Xue ZY, He ZL, <i>et al</i>. <b>Efficient organic solar cells enabled by sustainable and synergetic device engineering.</b> <i>Chemical Engineering Journal</i> 2024; <b>481</b>: 148728.</p><p>Aitchison CM, McCulloch I. <b>Organic photovoltaic materials for solar fuel applications: A perfect match?</b> <i>Chemistry of Materials</i> 2024; <b>36</b>(4): 1781-1792.</p><p>Zhang WC, Yue YC, Yang RS, <i>et al</i>. <b>A high-efficiency and stable organic solar cell with balanced crystallization kinetics.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(6): 2182-2192.</p><p>Lee JW, Lee HG, Oh ES, <i>et al</i>. <b>Rigid- and soft-block-copolymerized conjugated polymers enable high-performance intrinsically stretchable organic solar cells.</b> <i>Joule</i> 2024; <b>8</b>(1): 204-223.</p><p>Li Y, Wang J, Yan C, <i>et al</i>. <b>Optical and electrical losses in semitransparent organic photovoltaics.</b> <i>Joule</i> 2024; <b>8</b>(2): 527-541.</p><p>Suzuki T, Marumoto K. <b>Spin-dependent recombination affected by post-annealing of organic photovoltaic devices.</b> <i>Journal of Applied Physics</i> 2024; <b>135</b>(7): 075002.</p><p>Cui T, Huang Z, Zhang Y, <i>et al</i>. <b>A “belt” strategy for promoting the 3D network packing of fully non-fused ring acceptors in organic solar cells.</b> <i>Journal of Materials Chemistry A</i> 2024; <b>12</b>: 6996-7004.</p><p>Yu RN, Li S, Yuan HY, <i>et al</i>. <b>Research advances of nonfused ring acceptors for organic solar cells.</b> <i>Journal of Physical Chemistry Letters</i> 2024; <b>15</b>(10): 2781-2803.</p><p>He Y, Huo L, Zheng B. <b>Advances of batch-variation control for photovoltaic polymers.</b> <i>Nano Energy</i> 2024; <b>123</b>: 109397.</p><p>Ma XH, Li T, Song G, <i>et al</i>. <b>Chemisorption-induced robust and homogeneous tungsten disulfide interlayer enables stable PEDOT-free organic solar cells with over 19% efficiency.</b> <i>Nano Letters</i> 2024; <b>24</b>(10): 3051-3058.</p><p>Wang Z, Guo Y, Liu XZ, <i>et al</i>. <b>The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1212.</p><p>Xu LY, Wang W, Yang XR, <i>et al</i>. <b>Real-time monitoring polymerization degree of organic photovoltaic materials toward no batch-to-batch variations in device performance.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1248.</p><p>Kaliamurthy AK, Asiam FK, Yadagiri B, <i>et al</i>. <b>Effect of interfacial polarization on the trap passivation and dielectric constant of SrF</b><sub><b>2</b></sub><b>/TiO</b><sub><b>2</b></sub> <b>for dye-sensitized solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(5): 1983-1992.</p><p>Liu BT, Syu JC, Mizota I, <i>et al</i>. <b>Hydrophilic ligand exchange induces improved upconversion nanoparticle incorporation in dye-sensitized solar cells with efficiency exceeding 8% in a low-temperature fabrication process.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(3): 965-973.</p><p>Singh A, Singh AK, Dixit R, <i>et al</i>. <b>Visible, far-red, and near-infrared active unsymmetrical squaraine dyes based on extended conjugation within the polymethine framework for dye-sensitized solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(4): 1461-1475.</p><p>Kimura R, Oka C, Hata S, <i>et al</i>. <b>The effects of periodic textured substrate to control diffusion angle on the conversion efficiency of dye-sensitized solar cells.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(3): 03SP93.</p><p>Chauhan R, Srivastava A, Shirage PM, <i>et al</i>. <b>Innovating dye-sensitized solar cells through novel microalgal and cyanobacterial species extricated dyes: A sustainable tack for material scarce earth.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112369.</p><p>Roy P, Vats AK, Tang LJ, <i>et al</i>. <b>Controlling adsorption of two dyes on TiO</b><sub><b>2</b></sub> <b>surface to improve the efficiency of see-through dye-sensitized solar cells.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112339.</p><p>Santos F, Ivanou D, Mendes A. <b>Solid-state monolithic dye-sensitized solar cell exceeding 10% efficiency using a copper-complex hole transport material and a carbon counter-electrode.</b> <i>Solar RRL</i> 2024; <b>8</b>(2): 2300574.</p><p>Balaguera EH, Bisquert J. <b>Accelerating the assessment of hysteresis in perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 478-486.</p><p>Chang BH, Wang L, Li H, <i>et al</i>. <b>Phase-pure 2D/3D tin-based perovskite films for solar cells.</b> <i>Acs Energy Letters</i> 2024; <b>9</b>(2): 363-372.</p><p>Li C, Zhang K, Maiti S, <i>et al</i>. <b>Tailoring the dimensionality of 2D/3D heterojunctions for inverted perovskite solar cells.</b> <i>Acs Energy Letters</i> 2024; 779-788.</p><p>Flick AC, Rolston N, Dauskardt RH. <b>Indirect liftoff mechanism for high-throughput, single-source laser scribing for perovskite solar modules.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2303175.</p><p>Guesnay Q, Sahli F, Artuk K, <i>et al</i>. <b>Pizza oven processing of organohalide perovskites (POPOP): A simple, versatile and efficient vapor deposition method.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2303423.</p><p>Kamaraki C, Klug MT, Lim VJY, <i>et al</i>. <b>Charting the irreversible degradation modes of low bandgap Pb-Sn perovskite compositions for de-risking practical industrial development.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>: 2302916.</p><p>Qiu SD, Majewski M, Dong LR, <i>et al</i>. <b>In situ probing the crystallization kinetics in gas-quenching-assisted coating of perovskite films.</b> <i>Advanced Energy Materials</i> 2024; <b>14</b>(10): 2303210.</p><p>Liu M, Wang Y, Lu C, <i>et al</i>. <b>Localized oxidation embellishing strategy enables high-performance perovskite solar cells.</b> <i>Angewandte Chemie - International Edition</i> 2024; <b>63</b>(10): e202318621.</p><p>Azam M, Ke Z, Luo J, <i>et al</i>. <b>Additive engineering enabled non-radiative defect passivation with improved moisture-resistance in efficient and stable perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>483</b>: 149424.</p><p>Lu CY, Li XD, Yuan HB, <i>et al</i>. <b>Introducing back-surface field for efficient inverted CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>480</b>: 147267.</p><p>Sun SH, He BL, Wang ZY, <i>et al</i>. <b>Integration of SWCNT and WO</b><sub><b>3</b></sub> <b>for efficient charge extraction in all-inorganic perovskite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>483</b>: 149425.</p><p>Zheng YT, Li YR, Zhuang RS, <i>et al</i>. <b>Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps.</b> <i>Energy and Environmental Science</i> 2024; <b>17</b>(3): 1153-1162.</p><p>Zhang G, Zheng Y, Wang H, <i>et al</i>. <b>Shellac protects perovskite solar cell modules under real-world conditions.</b> <i>Joule</i> 2024; <b>8</b>(2): 496-508.</p><p>Iqbal Z, Félix R, Musiienko A, <i>et al</i>. <b>Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI</b><sub><b>3</b></sub> <b>perovskite solar cells.</b> <i>Journal of the American Chemical Society</i> 2024; <b>146</b>(7): 4642-4651.</p><p>Agresti A, Di Giacomo F, Pescetelli S, <i>et al</i>. <b>Scalable deposition techniques for large-area perovskite photovoltaic technology: A multi-perspective review.</b> <i>Nano Energy</i> 2024; <b>122</b>: 109317.</p><p>Zhou Q, Liu B, Chen Y, <i>et al</i>. <b>Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109512.</p><p>Chen P, Xiao Y, Hu JT, <i>et al</i>. <b>Multifunctional ytterbium oxide buffer for perovskite solar cells.</b> <i>Nature</i> 2024; <b>625</b>(7995): 516.</p><p>Aalbers GJW, van der Pol TPA, Datta K, <i>et al</i>. <b>Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1276.</p><p>Khadka DB, Shirai Y, Yanagida M, <i>et al</i>. <b>Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 882.</p><p>Kirmani AR, Byers TA, Ni ZY, <i>et al</i>. <b>Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 696.</p><p>Said AA, Aydin E, Ugur E, <i>et al</i>. <b>Sublimed C60 for efficient and repeatable perovskite-based solar cells.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 708.</p><p>Shi P, Xu J, Yavuz I, <i>et al</i>. <b>Strain regulates the photovoltaic performance of thick-film perovskites.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 2579.</p><p>Uddin MA, Rana PJS, Ni ZY, <i>et al</i>. <b>Iodide manipulation using zinc additives for efficient perovskite solar minimodules.</b> <i>Nature Communications</i> 2024; <b>15</b>(1): 1355.</p><p>Enkhbat T, Otgontamir N, Kim J. <b>Impact of chemical source selection on aqueous spray-deposited CZTSSe solar cells.</b> <i>Acs Applied Energy Materials</i> 2024; <b>7</b>(5): 1748-1755.</p><p>Barragán Sánchez-Lanuza M, Lillo-Bravo I, Moreno-Tejera S, <i>et al</i>. <b>Experimental CIGS technology performance under low concentration photovoltaic conditions.</b> <i>Journal of Cleaner Production</i> 2024; <b>446</b>: 141384.</p><p>Chen X, Zhao Y, Ahmad N, <i>et al</i>. <b>Achieving high open-circuit voltage in efficient kesterite solar cells via lanthanide europium ion induced carrier lifetime enhancement.</b> <i>Nano Energy</i> 2024; <b>124</b>: 109448.</p><p>Chauhan P, Agarwal S, Srivastava V, <i>et al</i>. <b>Impact on generation and recombination rate in Cu</b><sub><b>2</b></sub><b>ZnSnS</b><sub><b>4</b></sub> <b>(CZTS) solar cell for Ag</b><sub><b>2</b></sub><b>S and In</b><sub><b>2</b></sub><b>Se</b><sub><b>3</b></sub> <b>buffer layers with CuSbS</b><sub><b>2</b></sub> <b>back surface field layer.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 156-171.</p><p>Debono A, L'Hostis H, Rebai A, <i>et al</i>. <b>Synergistic effect between molybdenum back contact and CIGS absorber in the degradation of solar cells.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 137-155.</p><p>Zhang C, Ji J, Wang C, <i>et al</i>. <b>Annual analysis and comparison of the comprehensive performance of a CdTe PV ventilated window integrated with vacuum glazing in different climate regions.</b> <i>Renewable Energy</i> 2024; <b>223</b>: 120029.</p><p>Agrawal S, De Souza DO, Balasubramanian C, <i>et al</i>. <b>Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112719.</p><p>He Y, Zhao C, Lu Z, <i>et al</i>. <b>Optimizing the window layer for achieving over 10% efficient Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112798.</p><p>Kwok CKG, Tangara H, Masuko N, <i>et al</i>. <b>Effects of quasi-fermi level splitting and band tail states on open circuit voltage towards high-efficiency Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112767.</p><p>Liu XL, Abbas A, Togay M, <i>et al</i>. <b>The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>267</b>: 112717.</p><p>Nishinaga J, Kamikawa Y, Sugaya T, <i>et al</i>. <b>Comparison of polycrystalline and epitaxial Cu(In, Ga)Se</b><sub><b>2</b></sub> <b>solar cells with conversion efficiencies of more than 21%.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112791.</p><p>Phillips AB, Friedl JD, Subedi KK, <i>et al</i>. <b>Approach to determining the limiting recombination mechanism in CdTe-based solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>266</b>: 112689.</p><p>Tiede DO, Romero-Pérez C, Koch KA, <i>et al</i>. <b>Effect of connectivity on the carrier transport and recombination dynamics of perovskite quantum-dot networks.</b> <i>Acs Nano</i> 2024; <b>18</b>(3): 2325-2334.</p><p>Li C, Yao D, Dong P, <i>et al</i>. <b>Synergetic modification on buried and upper surfaces of perovskites with nitrogen-doped carbon quantum dots for efficient and stable solar cells.</b> <i>Applied Surface Science</i> 2024; <b>658</b>: 159848.</p><p>Ding XB, Wen X, Kawata Y, <i>et al</i>. <b>In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics.</b> <i>Nanoscale</i> 2024; <b>16</b>(10): 5115-5122.</p><p>Li ZR, Wu HF, Wang RX. <b>Actuality and technology prospect of using perovskite quantum dot solar cells as the photovoltaic roof.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112359.</p><p>Xiao G, Wang X, Liang T, <i>et al</i>. <b>Improved charge separation by anatase TiO</b><sub><b>2</b></sub> <b>nanorod arrays for efficient solid-state PbS quantum-dot-sensitized solar cells.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112769.</p><p>Hu ZH, Gao Y, Ji SY, <i>et al</i>. <b>Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122709.</p><p>Mercier TM, Sabet A, Rahman T. <b>Vision transformer models to measure solar irradiance using sky images in temperate climates.</b> <i>Applied Energy</i> 2024; <b>362</b>: 122967.</p><p>Mouhib E, Fernández-Solas A, Pérez-Higueras PJ, <i>et al</i>. <b>Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122660.</p><p>Varo-Martínez M, Fernández-Ahumada LM, Ramírez-Faz JC, <i>et al</i>. <b>Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122952.</p><p>Vaziri Rad MA, Forootan Fard H, Khazanedari K, <i>et al</i>. <b>A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods.</b> <i>Applied Energy</i> 2024; <b>360</b>: 122715.</p><p>Zhang K, Wang D, Chen M, <i>et al</i>. <b>Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122839.</p><p>Sun HJ, Fan SY, Cao SX, <i>et al</i>. <b>Quantitative modeling and validation of the impact of border dust on photovoltaic panels: A piecewise single diode approach.</b> <i>Energy</i> 2024; <b>291</b>: 130285.</p><p>Yang H, Ding K, Chen X, <i>et al</i>. <b>Fast simulation modeling and multiple-PS fault diagnosis of the PV array based on I–V curve conversion.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117965.</p><p>Ray B, Lasantha D, Beeravalli V, <i>et al</i>. <b>A comprehensive framework for effective long-short term solar yield forecasting.</b> <i>Energy Conversion and Management: X</i> 2024; <b>22</b>: 100535.</p><p>Elamim A, Sarikh S, Hartiti B, <i>et al</i>. <b>Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate.</b> <i>Energy Reports</i> 2024; <b>11</b>: 2346-2359.</p><p>Younis A, Rjafallah A, Cotfas PA, <i>et al</i>. <b>Dust impact on electrical and thermal photovoltaic performance: Insights from field and laboratory experiments.</b> <i>Energy Reports</i> 2024; <b>11</b>: 2099-2110.</p><p>Nedaei A, Eskandari A, Milimonfared J, <i>et al</i>. <b>Fault resistance estimation for line-line fault in photovoltaic arrays using regression-based dense neural network.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>133</b>: 108067.</p><p>De SB, Shiradkar N, Kottantharayil A. <b>Improved cleaning event detection methodology including partial cleaning by wind applied to different PV-SCADA datasets for soiling loss estimation.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 344-353.</p><p>Willers G, Naumann V, Holzlöhner R, <i>et al</i>. <b>Analysis of threshold conditions for cementation of soiling on PV modules and telescope mirrors.</b> <i>IEEE Journal of Photovoltaics</i> 2024; <b>14</b>(2): 330-336.</p><p>Tanguturi J, Keerthipati S. <b>Power balancing strategy for cascaded H-bridge inverter in a grid-connected photovoltaic system under asymmetrical operating conditions.</b> <i>IEEE Transactions on Industrial Electronics</i> 2024; <b>71</b>(6): 5853-5862.</p><p>Deville L, Theristis M, King BH, <i>et al</i>. <b>Open-source photovoltaic model pipeline validation against well-characterized system data.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 291-303.</p><p>Hacke P, Spataru S, Habersberger B, <i>et al</i>. <b>Field-representative evaluation of PID-polarization in TOPCon PV modules by accelerated stress testing.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(5): 346-355.</p><p>Abdulla H, Sleptchenko A, Nayfeh A. <b>Photovoltaic systems operation and maintenance: A review and future directions.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>195</b>: 114342.</p><p>Alkharusi T, Huang G, Markides CN. <b>Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance.</b> <i>Renewable Energy</i> 2024; <b>220</b>: 119422.</p><p>Demir H. <b>Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network.</b> <i>Renewable Energy</i> 2024; <b>222</b>: 120017.</p><p>Ma C, Wu RZ, Liu Z, <i>et al</i>. <b>Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment.</b> <i>Renewable Energy</i> 2024; <b>222</b>: 119890.</p><p>Micheli L, Muller M, Theristis M, <i>et al</i>. <b>Quantifying the impact of inverter clipping on photovoltaic performance and soiling losses.</b> <i>Renewable Energy</i> 2024; <b>225</b>: 120317.</p><p>Arefeen S, Dallas T. <b>Potential of tensegrity racking structures for enhanced bifacial PV array performance.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112344.</p><p>Baricchio M, Korevaar M, Babal P, <i>et al</i>. <b>Modelling of bifacial photovoltaic farms to evaluate the profitability of East/West vertical configuration.</b> <i>Solar Energy</i> 2024; <b>272</b>: 112457.</p><p>Guo B, Javed W. <b>Effect of incidence angle on PV soiling loss.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112298.</p><p>Khan MZ, Abuelseoud A, Lange K, <i>et al</i>. <b>Correlation between laboratory and outdoor soiling experiments with anti-soiling coatings.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>269</b>: 112751.</p><p>Louwen A, Lindig S, Chowdhury G, <i>et al</i>. <b>Climate- and technology-dependent performance loss rates in a large commercial photovoltaic monitoring dataset.</b> <i>Solar RRL</i> 2024; <b>8</b>: 2300653.</p><p>Jouttijärvi S, Karttunen L, Ranta S, <i>et al</i>. <b>Techno-economic analysis on optimizing the value of photovoltaic electricity in a high-latitude location.</b> <i>Applied Energy</i> 2024; <b>361</b>: 122924.</p><p>Kandpal B, Backe S, Crespo del Granado P. <b>Power purchase agreements for plus energy neighbourhoods: Financial risk mitigation through predictive modelling and bargaining theory.</b> <i>Applied Energy</i> 2024; <b>358</b>: 122589.</p><p>Loni A, Asadi S. <b>A data-driven approach to quantify social vulnerability to power outages: California case study.</b> <i>Applied Energy</i> 2024; <b>359</b>: 122739.</p><p>Meng L, Yang X, Zhu J, <i>et al</i>. <b>Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty.</b> <i>Applied Energy</i> 2024; <b>362</b>: 122846.</p><p>Lyu Y, He Y, Li S, <i>et al</i>. <b>Impact of grid connection cost channeling mechanisms on the development of distributed photovoltaic: The case of China.</b> <i>Energy Policy</i> 2024; <b>187</b>: 114041.</p><p>Wang ZR, Hao Z, Jia XF, <i>et al</i>. <b>Unravelling spatiotemporal patterns of solar photovoltaic plants development in China in the 21<sup>st</sup> century.</b> <i>Environmental Research Letters</i> 2024; <b>19</b>(3): 034005.</p><p>Warmann E, Jenerette GD, Barron-Gafford GA. <b>Agrivoltaic system design tools for managing trade-offs between energy production, crop productivity and water consumption.</b> <i>Environmental Research Letters</i> 2024; <b>19</b>(3): 034046.</p><p>Kumar BS, Kunar BM, Murthy CSN. <b>An adaptive modeling for bifacial solar module levelized cost and performance analysis for mining application.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(3): 186-198.</p><p>Heidari MR, Heravi G. <b>Development of flexible supportive policy with real options for renewable energy projects: Case of photovoltaic systems.</b> <i>Renewable Energy</i> 2024; <b>225</b>: 120326.</p><p>Yuan LY, Nain P, Kothari M, <i>et al</i>. <b>Material intensity and carbon footprint of crystalline silicon module assembly over time.</b> <i>Solar Energy</i> 2024; <b>269</b>: 112336.</p><p>Nyffenegger R, Boukhatmi Ä, Radavičius T, <i>et al</i>. <b>How circular is the European photovoltaic industry? Practical insights on current circular economy barriers, enablers, and goals.</b> <i>Journal of Cleaner Production</i> 2024; <b>448</b>: 141376.</p><p>Preet S, Smith ST. <b>A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook.</b> <i>Journal of Cleaner Production</i> 2024; <b>448</b>: 141661.</p><p>Iakovou E, Pistikopoulos EN, Walzberg J, <i>et al</i>. <b>Next-generation reverse logistics networks of photovoltaic recycling: Perspectives and challenges.</b> <i>Solar Energy</i> 2024; <b>271</b>: 112329.</p><p>Khetri M, Gupta MC. <b>Recycling of silver from silicon solar cells by laser debonding.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112381.</p><p>Ngagoum Ndalloka Z, Vijayakumar Nair H, Alpert S, <i>et al</i>. <b>Solar photovoltaic recycling strategies.</b> <i>Solar Energy</i> 2024; <b>270</b>: 112379.</p><p>Click N, Teknetzi I, Tam EPL, <i>et al</i>. <b>Innovative recycling of high purity silver from silicon solar cells by acid leaching and ultrasonication.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112834.</p><p>Wang J, Feng Y, He Y. <b>The research progress on recycling and resource utilization of waste crystalline silicon photovoltaic modules.</b> <i>Solar Energy Materials and Solar Cells</i> 2024; <b>270</b>: 112804.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 6\",\"pages\":\"417-422\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3809\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3809\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

Chen X, Zhao Y, Ahmad N, et al. 通过镧铕离子诱导的载流子寿命增强实现高效钾长石太阳能电池的高开路电压 2024; 124: 109448.Chauhan P, Agarwal S, Srivastava V, et al.Chauhan P, Agarwal S, Srivastava V, et al. Ag2S 和 In2Se3 缓冲层与 CuSbS2 背表面场层对 Cu2ZnSnS4 (CZTS) 太阳能电池发电和重组率的影响。光伏技术进展:2024;32(3):Debono A, L'Hostis H, Rebai A, et al.光伏技术进展:Photovoltaics: Research and Applications 2024; 32(3):Zhang C, Ji J, Wang C, et al. 不同气候区碲化镉光伏通风窗与真空玻璃一体化综合性能的年度分析与比较。Renewable Energy 2024; 223: 120029.Agrawal S, De Souza DO, Balasubramanian C, et al. Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell.He Y, Zhao C, Lu Z, et al. Optimizing the window layer for achieving over 10% efficient Cu2ZnSn(S,Se)4 solar cells.太阳能材料与太阳能电池 2024; 269:Kwok CKG, Tangara H, Masuko N, et al.太阳能材料和太阳能电池,2024;269:Liu XL, Abbas A, Togay M, et al. 残余碲化镉层对碲化镉/碲化镉光伏器件性能的影响。Nishinaga J, Kamikawa Y, Sugaya T, et al. 多晶和外延 Cu(In, Ga)Se2 太阳能电池转换效率超过 21% 的比较。太阳能材料和太阳能电池 2024; 269:Phillips AB, Friedl JD, Subedi KK, et al.Tiede DO, Romero-Pérez C, Koch KA, et al.Acs Nano 2024; 18(3):Li C, Yao D, Dong P, et al.Ding XB, Wen X, Kawata Y, et al. In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics.Nanoscale 2024; 16(10):5115-5122.Li ZR, Wu HF, Wang RX.将过氧化物量子点太阳能电池用作光伏屋顶的现实意义和技术前景.太阳能 2024; 269:112359.Xiao G, Wang X, Liang T, et al. Improved charge separation by anatase TiO2 nanorod arrays for efficient solid-state PbS quantum-dot-sensitized solar cells.太阳能材料与太阳能电池,2024;269:Hu ZH, Gao Y, Ji SY, et al. 基于 LSTM 和天气预报数据自我关注的改进型多步超前光伏功率预测模型。Mercier TM, Sabet A, Rahman T. Vision transformer models to measure solar irradiance using sky images in temperate climates.Applied Energy 2024; 362: 122967.Mouhib E, Fernández-Solas A, Pérez-Higueras PJ, et al:在农业光伏系统中整合双面光伏和橄榄树。应用能源 2024; 359: 122660.Varo-Martínez M, Fernández-Ahumada LM, Ramírez-Faz JC, et al. Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants.Applied Energy 2024; 361: 122952.Vaziri Rad MA, Forootan Fard H, Khazanedari K, et al. A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems:整合 DEMATEL、ANP 和 MCDM 方法。应用能源 2024》;360: 122715.Zhang K, Wang D, Chen M, et al. 中国 52 个主要城市光伏隔音屏障发电量评估。应用能源 2024; 361: 122839.Sun HJ, Fan SY, Cao SX, et al.边界灰尘对光伏板影响的定量建模与验证:片状单二极管方法。基于I-V曲线转换的光伏阵列快速仿真建模与多PS故障诊断。Ray B, Lasantha D, Beeravalli V, et al. A comprehensive framework for effective long-short term solar yield forecasting.能源转换与管理》:X 2024; 22: 100535.Elamim A, Sarikh S, Hartiti B, et al. 灰尘积累及其对地中海气候下太阳能光伏系统性能影响的实验研究。能源报告 2024; 11: 2346-2359。 Younis A, Rjafallah A, Cotfas PA, et al. 灰尘对光伏电热性能的影响:来自现场和实验室实验的启示。Nedaei A, Eskandari A, Milimonfared J, et al. Fault resistance estimation for line-line fault in photovoltaic arrays using regression-based dense neural network.De SB, Shiradkar N, Kottantharayil A. Improved cleaning event detection methodology including partial cleaning by wind applied to different PV-SCADA datasets for soiling loss estimation.IEEE Journal of Photovoltaics 2024; 14(2):344-353.Willers G, Naumann V, Holzlöhner R, et al. 光伏组件和望远镜镜面污垢固化阈值条件分析。IEEE 光伏学报 2024; 14(2):330-336.Tanguturi J, Keerthipati S.不对称工作条件下并网光伏系统中级联 H 桥逆变器的功率平衡策略。IEEE Transactions on Industrial Electronics 2024; 71(6):Deville L, Theristis M, King BH, et al. Open-source photovoltaic model pipeline validation against wellcharacterized system data.光伏技术进展:研究与应用》,2024 年,第 32(5)期:Hacke P, Spataru S, Habersberger B, et al.光伏技术进展:Photovoltaics: Research and Applications 2024; 32(5):Abdulla H, Sleptchenko A, Nayfeh A. Photovoltaic systems operation and maintenance:回顾与未来方向。Renewable and Sustainable Energy Reviews 2024; 195: 114342.Alkharusi T, Huang G, Markides CN.玻璃表面污垢的特征及其对光学和太阳能光伏性能的影响。Renewable Energy 2024; 220: 119422.Demir H. 使用人工神经网络模拟和预测光伏板中能量收集方法的功率。Renewable Energy 2024; 222: 120017.Ma C, Wu RZ, Liu Z, et al. Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment.Renewable Energy 2024; 222: 119890.Micheli L, Muller M, Theristis M, et al.量化逆变器削波对光伏性能和污损的影响。可再生能源 2024; 225:120317.Arefeen S, Dallas T. 《增强双面光伏阵列性能的张力整体支架结构潜力》。太阳能 2024; 269:112344.Baricchio M, Korevaar M, Babal P, et al. 双面光伏农场建模,评估东西垂直配置的盈利能力。Guo B, Javed W. 入射角对光伏污损的影响。太阳能 2024; 269:Khan MZ, Abuelseoud A, Lange K, et al.太阳能材料与太阳能电池》,2024;269:112298:112751.Louwen A、Lindig S、Chowdhury G 等:大型商用光伏监测数据集中与气候和技术相关的性能损失率。Solar RRL 2024; 8: 2300653.Jouttijärvi S, Karttunen L, Ranta S, et al. 高纬度地区光伏发电价值优化的技术经济分析。Kandpal B、Backe S、Crespo del Granado P. plus energy neighbourhoods 的购电协议:通过预测建模和讨价还价理论降低金融风险。应用能源》,2024 年,第 358 期:Loni A, Asadi S. A data-driven approach to quantify social vulnerability to power outages:加利福尼亚案例研究。Meng L, Yang X, Zhu J, et al. Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty.应用能源 2024; 362: 122846.Lyu Y, He Y, Li S, et al.Wang ZR, Hao Z, Jia XF, et al. Unravelling spatiotemporal patterns of solar photovoltaic plants development in China in the 21st century.环境研究通讯 2024; 19(3):034005.Warmann E, Jenerette GD, Barron-Gafford GA.管理能源生产、作物产量和耗水量之间权衡的农业光伏系统设计工具。Environmental Research Letters 2024; 19(3):034046.Kumar BS, Kunar BM, Murthy CSN.用于采矿应用的双面太阳能模块平准化成本和性能分析的自适应建模。光伏技术进展:研究与应用》,2024 年,第 32(3)期:186-198.Heidari MR, Heravi G. Development of flexible supportive policy with real options for renewable energy projects:光伏系统案例。Renewable Energy 2024; 225:120326.Yuan LY, Nain P, Kothari M, et al.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photovoltaics literature survey (No. 191)

To help readers stay up-to-date in the field, each issue of Progress in Photovoltaics contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].

Basnet R, Yan D, Kang D, et al. Current status and challenges for hole-selective poly-silicon based passivating contacts. Applied Physics Reviews 2024; 11(1): 011311.

Quirk J, Rothmann M, Li W, et al. Grain boundaries in polycrystalline materials for energy applications: First principles modeling and electron microscopy. Applied Physics Reviews 2024; 11(1): 011308.

Brinkmann KO, Wang P, Lang FL, et al. Perovskite-organic tandem solar cells. Nature Reviews Materials 2024; 9(3): 202-217.

Roose B, Dey K, Fitzsimmons MR, et al. Electrochemical impedance spectroscopy of all-perovskite tandem solar cells. Acs Energy Letters 2024; 9(2): 442-453.

Kumar R, Puranik VE, Gupta R. Application of electroluminescence imaging to distinguish ohmic and non ohmic shunting in inaccessible cells within a PV module. IEEE Journal of Photovoltaics 2024; 14(2): 296-304.

Mahadevan S, Liu T, Pratik SM, et al. Assessing intra- and inter-molecular charge transfer excitations in non-fullerene acceptors using electroabsorption spectroscopy. Nature Communications 2024; 15(1): 2393.

Chojniak D, Steiner M, Reichmuth SK, et al. Outdoor measurements of a full-size bifacial Pero/Si tandem module under different spectral conditions. Progress in Photovoltaics: Research and Applications 2024; 32(4): 219-231.

Ma F-J, Wang S, Yi C, et al. A collaborative framework for unifying typical multidimensional solar cell simulations – Part I. Ten common simulation steps and representing variables. Progress in Photovoltaics: Research and Applications 2024; 32(5): 330-345.

Tahir S, Saeed R, Ashfaq A, et al. Optical modeling and characterization of bifacial SiNx/AlOx dielectric layers for surface passivation and antireflection in PERC. Progress in Photovoltaics: Research and Applications 2024; 32(2): 63-72.

Li B, Hansen CW, Chen X, et al. A robust I–V curve correction procedure for degraded photovoltaic modules. Renewable Energy 2024; 224: 120108.

Zandi S, Hameiri Z, Mahboubi Soufiani A, et al. Simplified method for the conversion of luminescence signals from silicon wafers and solar cells into implied voltages. Solar Energy Materials and Solar Cells 2024; 269:112716.

Sun B, Lu L, Chen J, et al. Full-spectrum radiative cooling for enhanced thermal and electrical performance of bifacial solar photovoltaic modules: A nationwide quantitative analysis. Applied Energy 2024; 362: 123037.

Min B, Noack P, Wattenberg B, et al. Wet-chemically grown interfacial oxide for passivating contacts fabricated with an industrial inline processing system. IEEE Journal of Photovoltaics 2024; 14(2): 233-239.

Sinha A, Dasgupta S, Rohatgi A, et al. Rapid thermal annealing effects on passivation quality of p-TOPCon silicon solar cells. IEEE Journal of Photovoltaics 2024; 14(2): 226-232.

Arriaga Arruti O, Gnocchi L, Jeangros Q, et al. Potential-induced degradation in bifacial silicon heterojunction solar modules: Insights and mitigation strategies. Progress in Photovoltaics: Research and Applications 2024; 32(5): 304-316.

Chen W, Liu W, Yu Y, et al. Study on selective emitter fabrication through an innovative pre-diffusion process for enhanced efficiency in TOPCon solar cells. Progress in Photovoltaics: Research and Applications 2024; 32(3): 199-211.

Unsur V. Implementation of nickel and copper as cost-effective alternative contacts in silicon solar cells. Progress in Photovoltaics: Research and Applications 2024; 32(4): 267-275.

Bonilla RS, Al-Dhahir I, Niu X, et al. Enhancing dielectric-silicon interfaces through surface electric fields during firing. Solar Energy Materials and Solar Cells 2024; 269: 112799.

Deng S, Cai YL, Roemer U, et al. Mitigating parasitic absorption in poly-Si contacts for TOPCon solar cells: A comprehensive review. Solar Energy Materials and Solar Cells 2024; 267: 112704.

Hossain MJ, Sun MD, Davis KO. Photon management in silicon photovoltaic cells: A critical review. Solar Energy Materials and Solar Cells 2024; 267: 112715.

Ma S, Liao B, Du DX, et al. Bi-layer in-situ phosphorus doped poly-Si films by PECVD for blistering-free high-efficiency industrial TOPCon solar cells. Solar Energy Materials and Solar Cells 2024; 269: 112771.

Padhamnath P, Choi W-J, De Luna G, et al. Design and development of front and back contact solar cells with selective poly-Si passivating contact on the front and local Al contact on the rear. Solar Energy Materials and Solar Cells 2024; 269: 112759.

Rougieux FE, Sen C, Abbott M, et al. Light-activated surface passivation for more efficient silicon heterojunction solar cells: Origin, physics and stability. Solar Energy Materials and Solar Cells 2024; 269: 112789.

Xie Z, Chen S, Pei YL, et al. Enhanced efficiency in two-terminal all-perovskite tandem solar cells via binary functional high polymer doping strategy. Chemical Engineering Journal 2024; 482: 148638.

Bin Jahangir J, Patel MT, Asadpour R, et al. Planet-scale energy yield potential of next-generation bifacial, multiterminal, perovskite-silicon tandem solar farms. IEEE Journal of Photovoltaics 2024; 14(2): 363-371.

Alberi K, Berry JJ, Cordell JJ, et al. A roadmap for tandem photovoltaics. Joule 2024; 8(3): 658-692.

Chime U, Duan W, Lambertz A, et al. Thin silicon heterojunction solar cells in perovskite shadow: Bottom cell prospective. Solar Energy Materials and Solar Cells 2024; 270: 112813.

Hasan SAU, Zahid MA, Park S, et al. Stability challenges for a highly efficient perovskite/silicon tandem solar cell: A review. Solar RRL 2024; 8(6): 2300967.

Li ML, Li ZZ, Fu HT, et al. Molecularly engineered self-assembled monolayers as effective hole-selective layers for organic solar cells. Acs Applied Energy Materials 2024; 7(3): 1306-1312.

Jiang ER, List M, Jamali A, et al. Over 1000 V DC voltage from organic solar mini-modules. Acs Energy Letters 2024; 9(3): 908-910.

Sun XK, Lv J, Wang F, et al. Efficiency boost in all-small-molecule organic solar cells: Insights from the re-ordering kinetics. Advanced Energy Materials 2024; 14(3): 2302731.

Tian GS, Li YL, Chen Y, et al. Relocating selenium alkyl chain enables efficient all-small molecule organic solar cells. Chemical Engineering Journal 2024; 482: 149149.

Zhang SM, Xue ZY, He ZL, et al. Efficient organic solar cells enabled by sustainable and synergetic device engineering. Chemical Engineering Journal 2024; 481: 148728.

Aitchison CM, McCulloch I. Organic photovoltaic materials for solar fuel applications: A perfect match? Chemistry of Materials 2024; 36(4): 1781-1792.

Zhang WC, Yue YC, Yang RS, et al. A high-efficiency and stable organic solar cell with balanced crystallization kinetics. Energy and Environmental Science 2024; 17(6): 2182-2192.

Lee JW, Lee HG, Oh ES, et al. Rigid- and soft-block-copolymerized conjugated polymers enable high-performance intrinsically stretchable organic solar cells. Joule 2024; 8(1): 204-223.

Li Y, Wang J, Yan C, et al. Optical and electrical losses in semitransparent organic photovoltaics. Joule 2024; 8(2): 527-541.

Suzuki T, Marumoto K. Spin-dependent recombination affected by post-annealing of organic photovoltaic devices. Journal of Applied Physics 2024; 135(7): 075002.

Cui T, Huang Z, Zhang Y, et al. A “belt” strategy for promoting the 3D network packing of fully non-fused ring acceptors in organic solar cells. Journal of Materials Chemistry A 2024; 12: 6996-7004.

Yu RN, Li S, Yuan HY, et al. Research advances of nonfused ring acceptors for organic solar cells. Journal of Physical Chemistry Letters 2024; 15(10): 2781-2803.

He Y, Huo L, Zheng B. Advances of batch-variation control for photovoltaic polymers. Nano Energy 2024; 123: 109397.

Ma XH, Li T, Song G, et al. Chemisorption-induced robust and homogeneous tungsten disulfide interlayer enables stable PEDOT-free organic solar cells with over 19% efficiency. Nano Letters 2024; 24(10): 3051-3058.

Wang Z, Guo Y, Liu XZ, et al. The role of interfacial donor-acceptor percolation in efficient and stable all-polymer solar cells. Nature Communications 2024; 15(1): 1212.

Xu LY, Wang W, Yang XR, et al. Real-time monitoring polymerization degree of organic photovoltaic materials toward no batch-to-batch variations in device performance. Nature Communications 2024; 15(1): 1248.

Kaliamurthy AK, Asiam FK, Yadagiri B, et al. Effect of interfacial polarization on the trap passivation and dielectric constant of SrF2/TiO2 for dye-sensitized solar cells. Acs Applied Energy Materials 2024; 7(5): 1983-1992.

Liu BT, Syu JC, Mizota I, et al. Hydrophilic ligand exchange induces improved upconversion nanoparticle incorporation in dye-sensitized solar cells with efficiency exceeding 8% in a low-temperature fabrication process. Acs Applied Energy Materials 2024; 7(3): 965-973.

Singh A, Singh AK, Dixit R, et al. Visible, far-red, and near-infrared active unsymmetrical squaraine dyes based on extended conjugation within the polymethine framework for dye-sensitized solar cells. Acs Applied Energy Materials 2024; 7(4): 1461-1475.

Kimura R, Oka C, Hata S, et al. The effects of periodic textured substrate to control diffusion angle on the conversion efficiency of dye-sensitized solar cells. Japanese Journal of Applied Physics 2024; 63(3): 03SP93.

Chauhan R, Srivastava A, Shirage PM, et al. Innovating dye-sensitized solar cells through novel microalgal and cyanobacterial species extricated dyes: A sustainable tack for material scarce earth. Solar Energy 2024; 270: 112369.

Roy P, Vats AK, Tang LJ, et al. Controlling adsorption of two dyes on TiO2 surface to improve the efficiency of see-through dye-sensitized solar cells. Solar Energy 2024; 269: 112339.

Santos F, Ivanou D, Mendes A. Solid-state monolithic dye-sensitized solar cell exceeding 10% efficiency using a copper-complex hole transport material and a carbon counter-electrode. Solar RRL 2024; 8(2): 2300574.

Balaguera EH, Bisquert J. Accelerating the assessment of hysteresis in perovskite solar cells. Acs Energy Letters 2024; 9(2): 478-486.

Chang BH, Wang L, Li H, et al. Phase-pure 2D/3D tin-based perovskite films for solar cells. Acs Energy Letters 2024; 9(2): 363-372.

Li C, Zhang K, Maiti S, et al. Tailoring the dimensionality of 2D/3D heterojunctions for inverted perovskite solar cells. Acs Energy Letters 2024; 779-788.

Flick AC, Rolston N, Dauskardt RH. Indirect liftoff mechanism for high-throughput, single-source laser scribing for perovskite solar modules. Advanced Energy Materials 2024; 14: 2303175.

Guesnay Q, Sahli F, Artuk K, et al. Pizza oven processing of organohalide perovskites (POPOP): A simple, versatile and efficient vapor deposition method. Advanced Energy Materials 2024; 14: 2303423.

Kamaraki C, Klug MT, Lim VJY, et al. Charting the irreversible degradation modes of low bandgap Pb-Sn perovskite compositions for de-risking practical industrial development. Advanced Energy Materials 2024; 14: 2302916.

Qiu SD, Majewski M, Dong LR, et al. In situ probing the crystallization kinetics in gas-quenching-assisted coating of perovskite films. Advanced Energy Materials 2024; 14(10): 2303210.

Liu M, Wang Y, Lu C, et al. Localized oxidation embellishing strategy enables high-performance perovskite solar cells. Angewandte Chemie - International Edition 2024; 63(10): e202318621.

Azam M, Ke Z, Luo J, et al. Additive engineering enabled non-radiative defect passivation with improved moisture-resistance in efficient and stable perovskite solar cells. Chemical Engineering Journal 2024; 483: 149424.

Lu CY, Li XD, Yuan HB, et al. Introducing back-surface field for efficient inverted CsPbI3 perovskite solar cells. Chemical Engineering Journal 2024; 480: 147267.

Sun SH, He BL, Wang ZY, et al. Integration of SWCNT and WO3 for efficient charge extraction in all-inorganic perovskite solar cells. Chemical Engineering Journal 2024; 483: 149425.

Zheng YT, Li YR, Zhuang RS, et al. Towards 26% efficiency in inverted perovskite solar cells via interfacial flipped band bending and suppressed deep-level traps. Energy and Environmental Science 2024; 17(3): 1153-1162.

Zhang G, Zheng Y, Wang H, et al. Shellac protects perovskite solar cell modules under real-world conditions. Joule 2024; 8(2): 496-508.

Iqbal Z, Félix R, Musiienko A, et al. Unveiling the potential of ambient air annealing for highly efficient inorganic CsPbI3 perovskite solar cells. Journal of the American Chemical Society 2024; 146(7): 4642-4651.

Agresti A, Di Giacomo F, Pescetelli S, et al. Scalable deposition techniques for large-area perovskite photovoltaic technology: A multi-perspective review. Nano Energy 2024; 122: 109317.

Zhou Q, Liu B, Chen Y, et al. Managing photons and carriers by multisite chiral molecules achieving high-performance perovskite solar cells fabricated in ambient air. Nano Energy 2024; 124: 109512.

Chen P, Xiao Y, Hu JT, et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 2024; 625(7995): 516.

Aalbers GJW, van der Pol TPA, Datta K, et al. Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells. Nature Communications 2024; 15(1): 1276.

Khadka DB, Shirai Y, Yanagida M, et al. Defect passivation in methylammonium/bromine free inverted perovskite solar cells using charge-modulated molecular bonding. Nature Communications 2024; 15(1): 882.

Kirmani AR, Byers TA, Ni ZY, et al. Unraveling radiation damage and healing mechanisms in halide perovskites using energy-tuned dual irradiation dosing. Nature Communications 2024; 15(1): 696.

Said AA, Aydin E, Ugur E, et al. Sublimed C60 for efficient and repeatable perovskite-based solar cells. Nature Communications 2024; 15(1): 708.

Shi P, Xu J, Yavuz I, et al. Strain regulates the photovoltaic performance of thick-film perovskites. Nature Communications 2024; 15(1): 2579.

Uddin MA, Rana PJS, Ni ZY, et al. Iodide manipulation using zinc additives for efficient perovskite solar minimodules. Nature Communications 2024; 15(1): 1355.

Enkhbat T, Otgontamir N, Kim J. Impact of chemical source selection on aqueous spray-deposited CZTSSe solar cells. Acs Applied Energy Materials 2024; 7(5): 1748-1755.

Barragán Sánchez-Lanuza M, Lillo-Bravo I, Moreno-Tejera S, et al. Experimental CIGS technology performance under low concentration photovoltaic conditions. Journal of Cleaner Production 2024; 446: 141384.

Chen X, Zhao Y, Ahmad N, et al. Achieving high open-circuit voltage in efficient kesterite solar cells via lanthanide europium ion induced carrier lifetime enhancement. Nano Energy 2024; 124: 109448.

Chauhan P, Agarwal S, Srivastava V, et al. Impact on generation and recombination rate in Cu2ZnSnS4 (CZTS) solar cell for Ag2S and In2Se3 buffer layers with CuSbS2 back surface field layer. Progress in Photovoltaics: Research and Applications 2024; 32(3): 156-171.

Debono A, L'Hostis H, Rebai A, et al. Synergistic effect between molybdenum back contact and CIGS absorber in the degradation of solar cells. Progress in Photovoltaics: Research and Applications 2024; 32(3): 137-155.

Zhang C, Ji J, Wang C, et al. Annual analysis and comparison of the comprehensive performance of a CdTe PV ventilated window integrated with vacuum glazing in different climate regions. Renewable Energy 2024; 223: 120029.

Agrawal S, De Souza DO, Balasubramanian C, et al. Effect of secondary phases controlled by precursor composition on the efficiency of CZTS thin film solar cell. Solar Energy Materials and Solar Cells 2024; 267: 112719.

He Y, Zhao C, Lu Z, et al. Optimizing the window layer for achieving over 10% efficient Cu2ZnSn(S,Se)4 solar cells. Solar Energy Materials and Solar Cells 2024; 269: 112798.

Kwok CKG, Tangara H, Masuko N, et al. Effects of quasi-fermi level splitting and band tail states on open circuit voltage towards high-efficiency Cu(In, Ga)Se2 solar cells. Solar Energy Materials and Solar Cells 2024; 269: 112767.

Liu XL, Abbas A, Togay M, et al. The effect of remnant CdSe layers on the performance of CdSeTe/CdTe photovoltaic devices. Solar Energy Materials and Solar Cells 2024; 267: 112717.

Nishinaga J, Kamikawa Y, Sugaya T, et al. Comparison of polycrystalline and epitaxial Cu(In, Ga)Se2 solar cells with conversion efficiencies of more than 21%. Solar Energy Materials and Solar Cells 2024; 269: 112791.

Phillips AB, Friedl JD, Subedi KK, et al. Approach to determining the limiting recombination mechanism in CdTe-based solar cells. Solar Energy Materials and Solar Cells 2024; 266: 112689.

Tiede DO, Romero-Pérez C, Koch KA, et al. Effect of connectivity on the carrier transport and recombination dynamics of perovskite quantum-dot networks. Acs Nano 2024; 18(3): 2325-2334.

Li C, Yao D, Dong P, et al. Synergetic modification on buried and upper surfaces of perovskites with nitrogen-doped carbon quantum dots for efficient and stable solar cells. Applied Surface Science 2024; 658: 159848.

Ding XB, Wen X, Kawata Y, et al. In situ synergistic halogen passivation of semiconducting PbS quantum dot inks for efficient photovoltaics. Nanoscale 2024; 16(10): 5115-5122.

Li ZR, Wu HF, Wang RX. Actuality and technology prospect of using perovskite quantum dot solar cells as the photovoltaic roof. Solar Energy 2024; 269: 112359.

Xiao G, Wang X, Liang T, et al. Improved charge separation by anatase TiO2 nanorod arrays for efficient solid-state PbS quantum-dot-sensitized solar cells. Solar Energy Materials and Solar Cells 2024; 269: 112769.

Hu ZH, Gao Y, Ji SY, et al. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. Applied Energy 2024; 359: 122709.

Mercier TM, Sabet A, Rahman T. Vision transformer models to measure solar irradiance using sky images in temperate climates. Applied Energy 2024; 362: 122967.

Mouhib E, Fernández-Solas A, Pérez-Higueras PJ, et al. Enhancing land use: Integrating bifacial PV and olive trees in agrivoltaic systems. Applied Energy 2024; 359: 122660.

Varo-Martínez M, Fernández-Ahumada LM, Ramírez-Faz JC, et al. Methodology for the estimation of cultivable space in photovoltaic installations with dual-axis trackers for their reconversion to agrivoltaic plants. Applied Energy 2024; 361: 122952.

Vaziri Rad MA, Forootan Fard H, Khazanedari K, et al. A global framework for maximizing sustainable development indexes in agri-photovoltaic-based renewable systems: Integrating DEMATEL, ANP, and MCDM methods. Applied Energy 2024; 360: 122715.

Zhang K, Wang D, Chen M, et al. Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities. Applied Energy 2024; 361: 122839.

Sun HJ, Fan SY, Cao SX, et al. Quantitative modeling and validation of the impact of border dust on photovoltaic panels: A piecewise single diode approach. Energy 2024; 291: 130285.

Yang H, Ding K, Chen X, et al. Fast simulation modeling and multiple-PS fault diagnosis of the PV array based on I–V curve conversion. Energy Conversion and Management 2024; 300: 117965.

Ray B, Lasantha D, Beeravalli V, et al. A comprehensive framework for effective long-short term solar yield forecasting. Energy Conversion and Management: X 2024; 22: 100535.

Elamim A, Sarikh S, Hartiti B, et al. Experimental studies of dust accumulation and its effects on the performance of solar PV systems in Mediterranean climate. Energy Reports 2024; 11: 2346-2359.

Younis A, Rjafallah A, Cotfas PA, et al. Dust impact on electrical and thermal photovoltaic performance: Insights from field and laboratory experiments. Energy Reports 2024; 11: 2099-2110.

Nedaei A, Eskandari A, Milimonfared J, et al. Fault resistance estimation for line-line fault in photovoltaic arrays using regression-based dense neural network. Engineering Applications of Artificial Intelligence 2024; 133: 108067.

De SB, Shiradkar N, Kottantharayil A. Improved cleaning event detection methodology including partial cleaning by wind applied to different PV-SCADA datasets for soiling loss estimation. IEEE Journal of Photovoltaics 2024; 14(2): 344-353.

Willers G, Naumann V, Holzlöhner R, et al. Analysis of threshold conditions for cementation of soiling on PV modules and telescope mirrors. IEEE Journal of Photovoltaics 2024; 14(2): 330-336.

Tanguturi J, Keerthipati S. Power balancing strategy for cascaded H-bridge inverter in a grid-connected photovoltaic system under asymmetrical operating conditions. IEEE Transactions on Industrial Electronics 2024; 71(6): 5853-5862.

Deville L, Theristis M, King BH, et al. Open-source photovoltaic model pipeline validation against well-characterized system data. Progress in Photovoltaics: Research and Applications 2024; 32(5): 291-303.

Hacke P, Spataru S, Habersberger B, et al. Field-representative evaluation of PID-polarization in TOPCon PV modules by accelerated stress testing. Progress in Photovoltaics: Research and Applications 2024; 32(5): 346-355.

Abdulla H, Sleptchenko A, Nayfeh A. Photovoltaic systems operation and maintenance: A review and future directions. Renewable and Sustainable Energy Reviews 2024; 195: 114342.

Alkharusi T, Huang G, Markides CN. Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance. Renewable Energy 2024; 220: 119422.

Demir H. Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network. Renewable Energy 2024; 222: 120017.

Ma C, Wu RZ, Liu Z, et al. Performance assessment of different photovoltaic module technologies in floating photovoltaic power plants under waters environment. Renewable Energy 2024; 222: 119890.

Micheli L, Muller M, Theristis M, et al. Quantifying the impact of inverter clipping on photovoltaic performance and soiling losses. Renewable Energy 2024; 225: 120317.

Arefeen S, Dallas T. Potential of tensegrity racking structures for enhanced bifacial PV array performance. Solar Energy 2024; 269: 112344.

Baricchio M, Korevaar M, Babal P, et al. Modelling of bifacial photovoltaic farms to evaluate the profitability of East/West vertical configuration. Solar Energy 2024; 272: 112457.

Guo B, Javed W. Effect of incidence angle on PV soiling loss. Solar Energy 2024; 269: 112298.

Khan MZ, Abuelseoud A, Lange K, et al. Correlation between laboratory and outdoor soiling experiments with anti-soiling coatings. Solar Energy Materials and Solar Cells 2024; 269: 112751.

Louwen A, Lindig S, Chowdhury G, et al. Climate- and technology-dependent performance loss rates in a large commercial photovoltaic monitoring dataset. Solar RRL 2024; 8: 2300653.

Jouttijärvi S, Karttunen L, Ranta S, et al. Techno-economic analysis on optimizing the value of photovoltaic electricity in a high-latitude location. Applied Energy 2024; 361: 122924.

Kandpal B, Backe S, Crespo del Granado P. Power purchase agreements for plus energy neighbourhoods: Financial risk mitigation through predictive modelling and bargaining theory. Applied Energy 2024; 358: 122589.

Loni A, Asadi S. A data-driven approach to quantify social vulnerability to power outages: California case study. Applied Energy 2024; 359: 122739.

Meng L, Yang X, Zhu J, et al. Network partition and distributed voltage coordination control strategy of active distribution network system considering photovoltaic uncertainty. Applied Energy 2024; 362: 122846.

Lyu Y, He Y, Li S, et al. Impact of grid connection cost channeling mechanisms on the development of distributed photovoltaic: The case of China. Energy Policy 2024; 187: 114041.

Wang ZR, Hao Z, Jia XF, et al. Unravelling spatiotemporal patterns of solar photovoltaic plants development in China in the 21st century. Environmental Research Letters 2024; 19(3): 034005.

Warmann E, Jenerette GD, Barron-Gafford GA. Agrivoltaic system design tools for managing trade-offs between energy production, crop productivity and water consumption. Environmental Research Letters 2024; 19(3): 034046.

Kumar BS, Kunar BM, Murthy CSN. An adaptive modeling for bifacial solar module levelized cost and performance analysis for mining application. Progress in Photovoltaics: Research and Applications 2024; 32(3): 186-198.

Heidari MR, Heravi G. Development of flexible supportive policy with real options for renewable energy projects: Case of photovoltaic systems. Renewable Energy 2024; 225: 120326.

Yuan LY, Nain P, Kothari M, et al. Material intensity and carbon footprint of crystalline silicon module assembly over time. Solar Energy 2024; 269: 112336.

Nyffenegger R, Boukhatmi Ä, Radavičius T, et al. How circular is the European photovoltaic industry? Practical insights on current circular economy barriers, enablers, and goals. Journal of Cleaner Production 2024; 448: 141376.

Preet S, Smith ST. A comprehensive review on the recycling technology of silicon based photovoltaic solar panels: Challenges and future outlook. Journal of Cleaner Production 2024; 448: 141661.

Iakovou E, Pistikopoulos EN, Walzberg J, et al. Next-generation reverse logistics networks of photovoltaic recycling: Perspectives and challenges. Solar Energy 2024; 271: 112329.

Khetri M, Gupta MC. Recycling of silver from silicon solar cells by laser debonding. Solar Energy 2024; 270: 112381.

Ngagoum Ndalloka Z, Vijayakumar Nair H, Alpert S, et al. Solar photovoltaic recycling strategies. Solar Energy 2024; 270: 112379.

Click N, Teknetzi I, Tam EPL, et al. Innovative recycling of high purity silver from silicon solar cells by acid leaching and ultrasonication. Solar Energy Materials and Solar Cells 2024; 270: 112834.

Wang J, Feng Y, He Y. The research progress on recycling and resource utilization of waste crystalline silicon photovoltaic modules. Solar Energy Materials and Solar Cells 2024; 270: 112804.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信