神经网络设计的三量子比特硅门可抵御电荷噪声和串扰

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
David W Kanaar, J P Kestner
{"title":"神经网络设计的三量子比特硅门可抵御电荷噪声和串扰","authors":"David W Kanaar, J P Kestner","doi":"10.1088/2058-9565/ad3d06","DOIUrl":null,"url":null,"abstract":"Spin qubits in semiconductor quantum dots are a promising platform for quantum computing, however, scaling to large systems is hampered by crosstalk and charge noise. Crosstalk here refers to the unwanted off-resonant rotation of idle qubits during the resonant rotation of the target qubit. For a three-qubit system with crosstalk and charge noise, it is difficult to analytically create gate protocols that produce three-qubit gates, such as the Toffoli gate, directly in a single shot instead of through the composition of two-qubit gates. Therefore, we numerically optimize a physics-informed neural network to produce theoretically robust shaped pulses that generate a Toffoli-equivalent gate. Additionally, robust <inline-formula>\n<tex-math><?CDATA $\\frac{\\pi}{2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mfrac><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"qstad3d06ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>\n<italic toggle=\"yes\">X</italic> and Controlled-Z gates are also presented in this work to create a universal set of gates robust against charge noise. The robust pulses maintain an infidelity of 10<sup>−3</sup> for average quasistatic fluctuations in the voltage of up to a few mV instead of tenths of mV for non-robust pulses.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural-network-designed three-qubit gates robust against charge noise and crosstalk in silicon\",\"authors\":\"David W Kanaar, J P Kestner\",\"doi\":\"10.1088/2058-9565/ad3d06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin qubits in semiconductor quantum dots are a promising platform for quantum computing, however, scaling to large systems is hampered by crosstalk and charge noise. Crosstalk here refers to the unwanted off-resonant rotation of idle qubits during the resonant rotation of the target qubit. For a three-qubit system with crosstalk and charge noise, it is difficult to analytically create gate protocols that produce three-qubit gates, such as the Toffoli gate, directly in a single shot instead of through the composition of two-qubit gates. Therefore, we numerically optimize a physics-informed neural network to produce theoretically robust shaped pulses that generate a Toffoli-equivalent gate. Additionally, robust <inline-formula>\\n<tex-math><?CDATA $\\\\frac{\\\\pi}{2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mfrac><mml:mi>π</mml:mi><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"qstad3d06ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>\\n<italic toggle=\\\"yes\\\">X</italic> and Controlled-Z gates are also presented in this work to create a universal set of gates robust against charge noise. The robust pulses maintain an infidelity of 10<sup>−3</sup> for average quasistatic fluctuations in the voltage of up to a few mV instead of tenths of mV for non-robust pulses.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad3d06\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad3d06","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半导体量子点中的自旋量子比特是量子计算的一个前景广阔的平台,然而,串扰和电荷噪声阻碍了其向大型系统的扩展。这里的串扰是指在目标量子比特的共振旋转过程中,闲置量子比特不希望发生的非共振旋转。对于存在串扰和电荷噪声的三量子比特系统来说,很难通过分析创建门协议,直接一次生成三量子比特门(如托福利门),而不是通过组成双量子比特门。因此,我们对物理信息神经网络进行了数值优化,以产生理论上稳健的异形脉冲,从而生成托福里等效门。此外,这项研究还提出了稳健π2X 门和受控-Z 门,以创建一套通用的门,使其对电荷噪声具有稳健性。稳健脉冲可将电压平均准静态波动保持在 10-3 的失真度,最高可达几毫伏,而非稳健脉冲的失真度仅为几十毫伏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural-network-designed three-qubit gates robust against charge noise and crosstalk in silicon
Spin qubits in semiconductor quantum dots are a promising platform for quantum computing, however, scaling to large systems is hampered by crosstalk and charge noise. Crosstalk here refers to the unwanted off-resonant rotation of idle qubits during the resonant rotation of the target qubit. For a three-qubit system with crosstalk and charge noise, it is difficult to analytically create gate protocols that produce three-qubit gates, such as the Toffoli gate, directly in a single shot instead of through the composition of two-qubit gates. Therefore, we numerically optimize a physics-informed neural network to produce theoretically robust shaped pulses that generate a Toffoli-equivalent gate. Additionally, robust π2 X and Controlled-Z gates are also presented in this work to create a universal set of gates robust against charge noise. The robust pulses maintain an infidelity of 10−3 for average quasistatic fluctuations in the voltage of up to a few mV instead of tenths of mV for non-robust pulses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信