探索四元数神经网络损失曲面

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jeremiah Bill, Bruce Cox
{"title":"探索四元数神经网络损失曲面","authors":"Jeremiah Bill,&nbsp;Bruce Cox","doi":"10.1007/s00006-024-01313-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01313-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring Quaternion Neural Network Loss Surfaces\",\"authors\":\"Jeremiah Bill,&nbsp;Bruce Cox\",\"doi\":\"10.1007/s00006-024-01313-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-024-01313-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01313-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01313-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了四元多层感知器(QMLP)神经网络优于实值多层感知器(MLP)神经网络的性能。本研究利用损失面可视化和投影技术,首次研究了基于四元数的优化损失面。这项研究的主要贡献是通过统计证明,QMLP 模型产生的损失面比实值神经网络的损失面更平滑,而实值神经网络的损失面是通过基于曲面曲率估计值的损失面 "好坏 "的稳健定量测量方法进行测量和比较的。广泛的计算测试验证了这些表面曲率估计值的有效性。论文全面比较了经过调整的 QMLP 模型和经过调整的实值 MLP 模型在回归任务和分类任务中的平均表面曲率。这些结果有力地证明了 QMLPs 在各种问题领域都能提高优化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Quaternion Neural Network Loss Surfaces

Exploring Quaternion Neural Network Loss Surfaces

This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信