{"title":"探索四元数神经网络损失曲面","authors":"Jeremiah Bill, Bruce Cox","doi":"10.1007/s00006-024-01313-2","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00006-024-01313-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring Quaternion Neural Network Loss Surfaces\",\"authors\":\"Jeremiah Bill, Bruce Cox\",\"doi\":\"10.1007/s00006-024-01313-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00006-024-01313-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01313-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01313-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
This paper explores the superior performance of quaternion multi-layer perceptron (QMLP) neural networks over real-valued multi-layer perceptron (MLP) neural networks, a phenomenon that has been empirically observed but not thoroughly investigated. The study utilizes loss surface visualization and projection techniques to examine quaternion-based optimization loss surfaces for the first time. The primary contribution of this research is the statistical evidence that QMLP models yield smoother loss surfaces than real-valued neural networks, which are measured and compared using a robust quantitative measure of loss surface “goodness” based on estimates of surface curvature. Extensive computational testing validates the effectiveness of these surface curvature estimates. The paper presents a comprehensive comparison of the average surface curvature of a tuned QMLP model and a tuned real-valued MLP model on both a regression task and a classification task. The results provide strong support for the improved optimization performance observed in QMLPs across various problem domains.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.