电致伸缩薄膜的形态稳定性

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Jin Zhang, Peter W. Voorhees
{"title":"电致伸缩薄膜的形态稳定性","authors":"Jin Zhang,&nbsp;Peter W. Voorhees","doi":"10.1016/j.ijengsci.2024.104073","DOIUrl":null,"url":null,"abstract":"<div><p>A large electric field is typically present in anodic or passive oxide films. Stresses induced by such a large electric field are critical in understanding the breakdown mechanism of thin oxide films and improving their corrosion resistance. In this work, we consider electromechanical coupling through the electrostrictive effect. A continuum model incorporating lattice misfit and electric field-induced stresses is developed. We perform a linear stability analysis of the full coupled model and show that, for typical oxides, neglecting electrostriction underestimates the film’s instability, especially in systems with a large electric field. Moreover, a region where electrostriction can potentially provide a stabilizing effect is identified, allowing electrostriction to enhance corrosion resistance. We identified an equilibrium electric field intrinsic to the system and the corresponding equilibrium film thickness. The film’s stability is very sensitive to the electric field: a 40 percent deviation from the equilibrium electric field can change the maximum growth rate by nearly an order of magnitude. Moreover, our model reduces to classical morphological instability models in the limit of misfit-only, electrostatic-only, and no-electrostriction cases. Finally, the effect of various parameters on the film’s stability is studied.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"199 ","pages":"Article 104073"},"PeriodicalIF":5.7000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological stability of electrostrictive thin films\",\"authors\":\"Jin Zhang,&nbsp;Peter W. Voorhees\",\"doi\":\"10.1016/j.ijengsci.2024.104073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A large electric field is typically present in anodic or passive oxide films. Stresses induced by such a large electric field are critical in understanding the breakdown mechanism of thin oxide films and improving their corrosion resistance. In this work, we consider electromechanical coupling through the electrostrictive effect. A continuum model incorporating lattice misfit and electric field-induced stresses is developed. We perform a linear stability analysis of the full coupled model and show that, for typical oxides, neglecting electrostriction underestimates the film’s instability, especially in systems with a large electric field. Moreover, a region where electrostriction can potentially provide a stabilizing effect is identified, allowing electrostriction to enhance corrosion resistance. We identified an equilibrium electric field intrinsic to the system and the corresponding equilibrium film thickness. The film’s stability is very sensitive to the electric field: a 40 percent deviation from the equilibrium electric field can change the maximum growth rate by nearly an order of magnitude. Moreover, our model reduces to classical morphological instability models in the limit of misfit-only, electrostatic-only, and no-electrostriction cases. Finally, the effect of various parameters on the film’s stability is studied.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"199 \",\"pages\":\"Article 104073\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000570\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阳极或被动氧化物薄膜中通常存在大电场。这种大电场引起的应力对于了解氧化薄膜的击穿机理和提高其耐腐蚀性至关重要。在这项工作中,我们考虑了通过电致伸缩效应产生的机电耦合。我们建立了一个包含晶格失配和电场诱导应力的连续体模型。我们对全耦合模型进行了线性稳定性分析,结果表明,对于典型的氧化物,忽略电致伸缩会低估薄膜的不稳定性,尤其是在具有大电场的系统中。此外,我们还确定了电致伸缩可能提供稳定效应的区域,从而使电致伸缩能够增强耐腐蚀性。我们确定了系统固有的平衡电场以及相应的平衡薄膜厚度。薄膜的稳定性对电场非常敏感:与平衡电场的 40% 偏差可使最大生长率改变近一个数量级。此外,我们的模型在仅有错配、仅有静电和无摩擦的情况下还原了经典的形态不稳定性模型。最后,我们还研究了各种参数对薄膜稳定性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morphological stability of electrostrictive thin films

A large electric field is typically present in anodic or passive oxide films. Stresses induced by such a large electric field are critical in understanding the breakdown mechanism of thin oxide films and improving their corrosion resistance. In this work, we consider electromechanical coupling through the electrostrictive effect. A continuum model incorporating lattice misfit and electric field-induced stresses is developed. We perform a linear stability analysis of the full coupled model and show that, for typical oxides, neglecting electrostriction underestimates the film’s instability, especially in systems with a large electric field. Moreover, a region where electrostriction can potentially provide a stabilizing effect is identified, allowing electrostriction to enhance corrosion resistance. We identified an equilibrium electric field intrinsic to the system and the corresponding equilibrium film thickness. The film’s stability is very sensitive to the electric field: a 40 percent deviation from the equilibrium electric field can change the maximum growth rate by nearly an order of magnitude. Moreover, our model reduces to classical morphological instability models in the limit of misfit-only, electrostatic-only, and no-electrostriction cases. Finally, the effect of various parameters on the film’s stability is studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信