论 p 拉普拉斯算子的新奇异和退化扩展

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
George Baravdish , Yuanji Cheng , Olof Svensson
{"title":"论 p 拉普拉斯算子的新奇异和退化扩展","authors":"George Baravdish ,&nbsp;Yuanji Cheng ,&nbsp;Olof Svensson","doi":"10.1016/j.na.2024.113553","DOIUrl":null,"url":null,"abstract":"<div><p>We study a novel degenerate and singular elliptic operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> defined by <span><math><mrow><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi><mo>=</mo><mi>τ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where the singular weights <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> are continuous functions on <span><math><mrow><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. The operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> is an extension of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>u</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>q</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></math></span> introduced by the authors in Baravdishet al. (2020), which in turn is an extension of the <span><math><mi>p</mi></math></span>-Laplace operator <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>.</mo></mrow></math></span> We establish the well-posedness of the Neumann boundary value problem for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi></mrow></math></span> in the framework of viscosity solutions. For the solution <span><math><mi>u</mi></math></span>, the weight <span><math><mi>χ</mi></math></span> controls the evolution along the tangential and the normal directions, respectively, on the level surface of <span><math><mi>u</mi></math></span>. The weight <span><math><mi>τ</mi></math></span> controls the total speed of the evolution of <span><math><mi>u</mi></math></span>. We also prove the consistency and the convergence of the numerical scheme for the finite differences method of the parabolic equation above. Numerical simulations show that our novel nonlinear operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> gives better results than both the Perona–Malik (Perona and Malik, 1990) and total variation (TV) methods (Chan and Shen, 2005) when applied to image enhancement.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24000725/pdfft?md5=6ea663f7ef82d1217c13c05825c4031b&pid=1-s2.0-S0362546X24000725-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On a new singular and degenerate extension of the p-Laplace operator\",\"authors\":\"George Baravdish ,&nbsp;Yuanji Cheng ,&nbsp;Olof Svensson\",\"doi\":\"10.1016/j.na.2024.113553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study a novel degenerate and singular elliptic operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> defined by <span><math><mrow><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi><mo>=</mo><mi>τ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><mrow><mo>(</mo><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>+</mo><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>u</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> where the singular weights <span><math><mrow><mi>τ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mo>≥</mo><mn>0</mn></mrow></math></span> are continuous functions on <span><math><mrow><mi>Ω</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>∖</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span>. The operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> is an extension of <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msup><mrow><mrow><mo>|</mo><mi>D</mi><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><msub><mrow><mi>Δ</mi></mrow><mrow><mi>∞</mi></mrow></msub><mi>u</mi><mo>,</mo><mspace></mspace><mi>p</mi><mo>≥</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>q</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mrow></math></span> introduced by the authors in Baravdishet al. (2020), which in turn is an extension of the <span><math><mi>p</mi></math></span>-Laplace operator <span><math><mrow><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>.</mo></mrow></math></span> We establish the well-posedness of the Neumann boundary value problem for the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub><mi>u</mi></mrow></math></span> in the framework of viscosity solutions. For the solution <span><math><mi>u</mi></math></span>, the weight <span><math><mi>χ</mi></math></span> controls the evolution along the tangential and the normal directions, respectively, on the level surface of <span><math><mi>u</mi></math></span>. The weight <span><math><mi>τ</mi></math></span> controls the total speed of the evolution of <span><math><mi>u</mi></math></span>. We also prove the consistency and the convergence of the numerical scheme for the finite differences method of the parabolic equation above. Numerical simulations show that our novel nonlinear operator <span><math><msub><mrow><mover><mrow><mi>Δ</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mrow><mo>(</mo><mi>τ</mi><mo>,</mo><mi>χ</mi><mo>)</mo></mrow></mrow></msub></math></span> gives better results than both the Perona–Malik (Perona and Malik, 1990) and total variation (TV) methods (Chan and Shen, 2005) when applied to image enhancement.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000725/pdfft?md5=6ea663f7ef82d1217c13c05825c4031b&pid=1-s2.0-S0362546X24000725-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24000725\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000725","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一种新的退化奇异椭圆算子 Δ˜(τ,χ),其定义为 Δ˜(τ,χ)u=τ(x,Du)(|Du|Δ1u+χ(x,Du)Δ∞u),其中奇异权重 τ(x,s)>;0和χ(x,s)≥0都是Ω×Rn∖{0}上的连续函数。算子Δ˜(τ,χ)是Δ(p,q)u=|Du|qΔ1u+(p-1)|Du|p-2Δ∞u,p≥1,q≥0的扩展,由作者在Baravdishet al.(2020)中引入,而后者又是p-拉普拉斯算子Δp的扩展。我们在粘性解的框架内建立了抛物方程 ut=Δ˜(τ,χ)u 的 Neumann 边界值问题的良好求解。我们还证明了上述抛物方程有限差分法数值方案的一致性和收敛性。数值模拟表明,在应用于图像增强时,我们的新型非线性算子 Δ˜(τ,χ) 比 Perona-Malik 方法(Perona 和 Malik,1990 年)和总变异方法(TV)(Chan 和 Shen,2005 年)都能得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a new singular and degenerate extension of the p-Laplace operator

We study a novel degenerate and singular elliptic operator Δ˜(τ,χ) defined by Δ˜(τ,χ)u=τ(x,Du)(|Du|Δ1u+χ(x,Du)Δu), where the singular weights τ(x,s)>0 and χ(x,s)0 are continuous functions on Ω×Rn{0}. The operator Δ˜(τ,χ) is an extension of Δ(p,q)u=|Du|qΔ1u+(p1)|Du|p2Δu,p1,q0, introduced by the authors in Baravdishet al. (2020), which in turn is an extension of the p-Laplace operator Δp. We establish the well-posedness of the Neumann boundary value problem for the parabolic equation ut=Δ˜(τ,χ)u in the framework of viscosity solutions. For the solution u, the weight χ controls the evolution along the tangential and the normal directions, respectively, on the level surface of u. The weight τ controls the total speed of the evolution of u. We also prove the consistency and the convergence of the numerical scheme for the finite differences method of the parabolic equation above. Numerical simulations show that our novel nonlinear operator Δ˜(τ,χ) gives better results than both the Perona–Malik (Perona and Malik, 1990) and total variation (TV) methods (Chan and Shen, 2005) when applied to image enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信