{"title":"部分偏好的迭代投票","authors":"Zoi Terzopoulou , Panagiotis Terzopoulos , Ulle Endriss","doi":"10.1016/j.artint.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>Voting platforms can offer participants the option to sequentially modify their preferences, whenever they have a reason to do so. But such iterative voting may never converge, meaning that a state where all agents are happy with their submitted preferences may never be reached. This problem has received increasing attention within the area of computational social choice. Yet, the relevant literature hinges on the rather stringent assumption that the agents are able to rank all alternatives they are presented with, i.e., that they hold preferences that are linear orders. We relax this assumption and investigate iterative voting under partial preferences. To that end, we define and study two families of rules that extend the well-known <em>k</em>-approval rules in the standard voting framework. Although we show that for none of these rules convergence is guaranteed in general, we also are able to identify natural conditions under which such guarantees can be given. Finally, we conduct simulation experiments to test the practical implications of our results.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"332 ","pages":"Article 104133"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224000699/pdfft?md5=f45969a9dc2b0460f68ac8a900765bbd&pid=1-s2.0-S0004370224000699-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Iterative voting with partial preferences\",\"authors\":\"Zoi Terzopoulou , Panagiotis Terzopoulos , Ulle Endriss\",\"doi\":\"10.1016/j.artint.2024.104133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Voting platforms can offer participants the option to sequentially modify their preferences, whenever they have a reason to do so. But such iterative voting may never converge, meaning that a state where all agents are happy with their submitted preferences may never be reached. This problem has received increasing attention within the area of computational social choice. Yet, the relevant literature hinges on the rather stringent assumption that the agents are able to rank all alternatives they are presented with, i.e., that they hold preferences that are linear orders. We relax this assumption and investigate iterative voting under partial preferences. To that end, we define and study two families of rules that extend the well-known <em>k</em>-approval rules in the standard voting framework. Although we show that for none of these rules convergence is guaranteed in general, we also are able to identify natural conditions under which such guarantees can be given. Finally, we conduct simulation experiments to test the practical implications of our results.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"332 \",\"pages\":\"Article 104133\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000699/pdfft?md5=f45969a9dc2b0460f68ac8a900765bbd&pid=1-s2.0-S0004370224000699-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224000699\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000699","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Voting platforms can offer participants the option to sequentially modify their preferences, whenever they have a reason to do so. But such iterative voting may never converge, meaning that a state where all agents are happy with their submitted preferences may never be reached. This problem has received increasing attention within the area of computational social choice. Yet, the relevant literature hinges on the rather stringent assumption that the agents are able to rank all alternatives they are presented with, i.e., that they hold preferences that are linear orders. We relax this assumption and investigate iterative voting under partial preferences. To that end, we define and study two families of rules that extend the well-known k-approval rules in the standard voting framework. Although we show that for none of these rules convergence is guaranteed in general, we also are able to identify natural conditions under which such guarantees can be given. Finally, we conduct simulation experiments to test the practical implications of our results.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.