{"title":"利用多相晶格玻尔兹曼法研究土壤-水特性曲线中的滞后源","authors":"Reihaneh Hosseini, Krishna Kumar, Jean-Yves Delenne","doi":"10.1007/s11440-024-02295-y","DOIUrl":null,"url":null,"abstract":"<p>The soil–water characteristic curve (SWCC) is the most fundamental relationship in unsaturated soil mechanics, relating the amount of water in the soil to the corresponding matric suction. From experimental evidence, it is known that SWCC exhibits hysteresis (i.e., wetting/drying path dependence). Various factors have been proposed as contributors to SWCC hysteresis, including air entrapment, contact angle hysteresis, ink-bottle effect, and change of soil fabric due to swelling and shrinkage; however, the significance of their contribution is debated. From our pore-scale numerical simulations, using the multiphase lattice Boltzmann method, we see that, even when controlling for all these factors, SWCC hysteresis still occurs, indicating that there is some underlying source that is not accounted for in these factors. We find this underlying source by comparing the liquid/gas phase distributions for simulated wetting and drying experiments of 2D and 3D granular packings. We see that during wetting (i.e., pore filling) many liquid bridges expand simultaneously and join together to fill the pores from the smallest to the largest, allowing menisci with larger radii of curvature (lower matric suction). Whereas, during drying (i.e., pore emptying), only the limited existing gas clusters can expand, which become constrained by the size of the pore openings surrounding them and result in menisci with smaller radii of curvature (higher matric suction).</p>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the source of hysteresis in the soil–water characteristic curve using the multiphase lattice Boltzmann method\",\"authors\":\"Reihaneh Hosseini, Krishna Kumar, Jean-Yves Delenne\",\"doi\":\"10.1007/s11440-024-02295-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The soil–water characteristic curve (SWCC) is the most fundamental relationship in unsaturated soil mechanics, relating the amount of water in the soil to the corresponding matric suction. From experimental evidence, it is known that SWCC exhibits hysteresis (i.e., wetting/drying path dependence). Various factors have been proposed as contributors to SWCC hysteresis, including air entrapment, contact angle hysteresis, ink-bottle effect, and change of soil fabric due to swelling and shrinkage; however, the significance of their contribution is debated. From our pore-scale numerical simulations, using the multiphase lattice Boltzmann method, we see that, even when controlling for all these factors, SWCC hysteresis still occurs, indicating that there is some underlying source that is not accounted for in these factors. We find this underlying source by comparing the liquid/gas phase distributions for simulated wetting and drying experiments of 2D and 3D granular packings. We see that during wetting (i.e., pore filling) many liquid bridges expand simultaneously and join together to fill the pores from the smallest to the largest, allowing menisci with larger radii of curvature (lower matric suction). Whereas, during drying (i.e., pore emptying), only the limited existing gas clusters can expand, which become constrained by the size of the pore openings surrounding them and result in menisci with smaller radii of curvature (higher matric suction).</p>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11440-024-02295-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11440-024-02295-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigating the source of hysteresis in the soil–water characteristic curve using the multiphase lattice Boltzmann method
The soil–water characteristic curve (SWCC) is the most fundamental relationship in unsaturated soil mechanics, relating the amount of water in the soil to the corresponding matric suction. From experimental evidence, it is known that SWCC exhibits hysteresis (i.e., wetting/drying path dependence). Various factors have been proposed as contributors to SWCC hysteresis, including air entrapment, contact angle hysteresis, ink-bottle effect, and change of soil fabric due to swelling and shrinkage; however, the significance of their contribution is debated. From our pore-scale numerical simulations, using the multiphase lattice Boltzmann method, we see that, even when controlling for all these factors, SWCC hysteresis still occurs, indicating that there is some underlying source that is not accounted for in these factors. We find this underlying source by comparing the liquid/gas phase distributions for simulated wetting and drying experiments of 2D and 3D granular packings. We see that during wetting (i.e., pore filling) many liquid bridges expand simultaneously and join together to fill the pores from the smallest to the largest, allowing menisci with larger radii of curvature (lower matric suction). Whereas, during drying (i.e., pore emptying), only the limited existing gas clusters can expand, which become constrained by the size of the pore openings surrounding them and result in menisci with smaller radii of curvature (higher matric suction).
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.