{"title":"大型微塑料对土壤物理行为的影响:对海洋沉积物的影响","authors":"Emelyne Routier, Marie Guenther, Marco Terzariol","doi":"10.1007/s11440-024-02336-6","DOIUrl":null,"url":null,"abstract":"<div><p>Marine plastic pollution has become a major concern as it threatens marine life and human health. Most of the plastic that enters the ocean is either consumed by animals and/or trapped in sediments. However, there is little information on how sediment properties might be affected. In this article, we explore the impact of microplastic inclusions in marine settings by using PVC plastic chips and two soil samples as analogues. We conducted a comprehensive experimental study to investigate changes in compressibility, strength, stiffness, thermal and hydraulic conductivity, and particle migration by varying plastic content. Results show that as low as 1% of plastic content by volume can lead to irreversible consequences in sediment behavior while coarse particles display a heightened sensitivity than pure fines. As plastic content in sediment increases year-by-year, we anticipate significant repercussions in marine life, the future landscape of the seafloor and subsurface phenomena.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 11","pages":"7603 - 7617"},"PeriodicalIF":5.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of large microplastics on the physical behavior of soils: implications to marine sediments\",\"authors\":\"Emelyne Routier, Marie Guenther, Marco Terzariol\",\"doi\":\"10.1007/s11440-024-02336-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine plastic pollution has become a major concern as it threatens marine life and human health. Most of the plastic that enters the ocean is either consumed by animals and/or trapped in sediments. However, there is little information on how sediment properties might be affected. In this article, we explore the impact of microplastic inclusions in marine settings by using PVC plastic chips and two soil samples as analogues. We conducted a comprehensive experimental study to investigate changes in compressibility, strength, stiffness, thermal and hydraulic conductivity, and particle migration by varying plastic content. Results show that as low as 1% of plastic content by volume can lead to irreversible consequences in sediment behavior while coarse particles display a heightened sensitivity than pure fines. As plastic content in sediment increases year-by-year, we anticipate significant repercussions in marine life, the future landscape of the seafloor and subsurface phenomena.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 11\",\"pages\":\"7603 - 7617\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02336-6\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02336-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
The impact of large microplastics on the physical behavior of soils: implications to marine sediments
Marine plastic pollution has become a major concern as it threatens marine life and human health. Most of the plastic that enters the ocean is either consumed by animals and/or trapped in sediments. However, there is little information on how sediment properties might be affected. In this article, we explore the impact of microplastic inclusions in marine settings by using PVC plastic chips and two soil samples as analogues. We conducted a comprehensive experimental study to investigate changes in compressibility, strength, stiffness, thermal and hydraulic conductivity, and particle migration by varying plastic content. Results show that as low as 1% of plastic content by volume can lead to irreversible consequences in sediment behavior while coarse particles display a heightened sensitivity than pure fines. As plastic content in sediment increases year-by-year, we anticipate significant repercussions in marine life, the future landscape of the seafloor and subsurface phenomena.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.