Paolo Sebastiano Floris, Najmeh Zahabi, Igor Zozoulenko, Riccardo Rurali
{"title":"高有序 PEDOT 光纤中的各向异性晶格导热率","authors":"Paolo Sebastiano Floris, Najmeh Zahabi, Igor Zozoulenko, Riccardo Rurali","doi":"10.1002/mame.202400092","DOIUrl":null,"url":null,"abstract":"<p>When it comes to sustainable and efficient energy solutions, organic semiconductors can play an important role in thermoelectric applications, since they are non-toxic, cheap, made of abundant chemical species, and show intrinsically low thermal conductivities. Their electrical conductivity can be optimized via doping. Yet, thermal conduction should be as low as possible and, to this end, the atomic scale mechanisms behind heat transport –e.g. the correlation between morphology and thermal conductivity or the role of doping– should be understood in detail. Fully atomistic molecular dynamics calculations of the lattice thermal conductivity of doped poly(3,4-ethylenedioxythiophene) (PEDOT) highly ordered, quasi-crystalline nanofibers are presented here. It is found that the conductivity along the backbone direction is not necessarily the highest, but it depends on the length of the PEDOT chains, thus the degree of anisotropy depends on the the aspect ratio of the nanofiber. Indeed, transport along the lamellar direction can be of the same order or higher than that of the backbone if their lengths are comparable. These results challenge the usual expectation that thermal conduction along the backbone largely exceeds those along the lamellar and π − π direction and have the important consequence that the anisotropy could be leveraged in thermal management applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400092","citationCount":"0","resultStr":"{\"title\":\"Anisotropic Lattice Thermal Conductivity in Highly Ordered PEDOT Fibers\",\"authors\":\"Paolo Sebastiano Floris, Najmeh Zahabi, Igor Zozoulenko, Riccardo Rurali\",\"doi\":\"10.1002/mame.202400092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When it comes to sustainable and efficient energy solutions, organic semiconductors can play an important role in thermoelectric applications, since they are non-toxic, cheap, made of abundant chemical species, and show intrinsically low thermal conductivities. Their electrical conductivity can be optimized via doping. Yet, thermal conduction should be as low as possible and, to this end, the atomic scale mechanisms behind heat transport –e.g. the correlation between morphology and thermal conductivity or the role of doping– should be understood in detail. Fully atomistic molecular dynamics calculations of the lattice thermal conductivity of doped poly(3,4-ethylenedioxythiophene) (PEDOT) highly ordered, quasi-crystalline nanofibers are presented here. It is found that the conductivity along the backbone direction is not necessarily the highest, but it depends on the length of the PEDOT chains, thus the degree of anisotropy depends on the the aspect ratio of the nanofiber. Indeed, transport along the lamellar direction can be of the same order or higher than that of the backbone if their lengths are comparable. These results challenge the usual expectation that thermal conduction along the backbone largely exceeds those along the lamellar and π − π direction and have the important consequence that the anisotropy could be leveraged in thermal management applications.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400092\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400092\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400092","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Anisotropic Lattice Thermal Conductivity in Highly Ordered PEDOT Fibers
When it comes to sustainable and efficient energy solutions, organic semiconductors can play an important role in thermoelectric applications, since they are non-toxic, cheap, made of abundant chemical species, and show intrinsically low thermal conductivities. Their electrical conductivity can be optimized via doping. Yet, thermal conduction should be as low as possible and, to this end, the atomic scale mechanisms behind heat transport –e.g. the correlation between morphology and thermal conductivity or the role of doping– should be understood in detail. Fully atomistic molecular dynamics calculations of the lattice thermal conductivity of doped poly(3,4-ethylenedioxythiophene) (PEDOT) highly ordered, quasi-crystalline nanofibers are presented here. It is found that the conductivity along the backbone direction is not necessarily the highest, but it depends on the length of the PEDOT chains, thus the degree of anisotropy depends on the the aspect ratio of the nanofiber. Indeed, transport along the lamellar direction can be of the same order or higher than that of the backbone if their lengths are comparable. These results challenge the usual expectation that thermal conduction along the backbone largely exceeds those along the lamellar and π − π direction and have the important consequence that the anisotropy could be leveraged in thermal management applications.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.