{"title":"Eomecon chionantha(中国特有种)完整叶绿体基因组序列及系统发育关系分析","authors":"Zhi Zhang, Guoshuai Zhang, Xinke Zhang, Huihui Zhang, Junbo Xie, Rui Zeng, Baolin Guo, Linfang Huang","doi":"10.1007/s10265-024-01539-y","DOIUrl":null,"url":null,"abstract":"<p><i>Eomecon chionantha</i> Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of <i>E. chionantha</i> are lacking. In this study, we investigated the characteristics of the <i>E. chionantha</i> chloroplast genome and determined the taxonomic position of <i>E. chionantha</i> in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify <i>E. chionantha</i> at the molecular level by comparing the chloroplast genomes of <i>E. chionantha</i> and its closely related species. The complete chloroplast genomic information indicated that <i>E. chionantha</i> chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that <i>E. chionantha</i> shares a close relationship with four distinct species, namely <i>Macleaya microcarpa</i>, <i>Coreanomecon hylomeconoides</i>, <i>Hylomecon japonica</i>, and <i>Chelidonium majus</i>. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of <i>E. chionantha</i>, providing a scientific reference for further understanding of <i>E. chionantha</i> from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":"67 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China\",\"authors\":\"Zhi Zhang, Guoshuai Zhang, Xinke Zhang, Huihui Zhang, Junbo Xie, Rui Zeng, Baolin Guo, Linfang Huang\",\"doi\":\"10.1007/s10265-024-01539-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Eomecon chionantha</i> Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of <i>E. chionantha</i> are lacking. In this study, we investigated the characteristics of the <i>E. chionantha</i> chloroplast genome and determined the taxonomic position of <i>E. chionantha</i> in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify <i>E. chionantha</i> at the molecular level by comparing the chloroplast genomes of <i>E. chionantha</i> and its closely related species. The complete chloroplast genomic information indicated that <i>E. chionantha</i> chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that <i>E. chionantha</i> shares a close relationship with four distinct species, namely <i>Macleaya microcarpa</i>, <i>Coreanomecon hylomeconoides</i>, <i>Hylomecon japonica</i>, and <i>Chelidonium majus</i>. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of <i>E. chionantha</i>, providing a scientific reference for further understanding of <i>E. chionantha</i> from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01539-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01539-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
Eomecon chionantha Hance 是中国特有的物种,在中国少数民族医学中有着悠久的历史,并以其消炎和镇痛作用而闻名。然而,目前还缺乏对 E. chionantha 的研究。在本研究中,我们研究了 E. chionantha 叶绿体基因组的特征,并通过系统发育分析确定了 E. chionantha 在罂粟科中的分类位置。此外,我们还通过比较 E. chionantha 及其近缘种的叶绿体基因组,确定了在分子水平上鉴定 E. chionantha 的分子标记。完整的叶绿体基因组信息表明,E. chionantha叶绿体DNA(178,808 bp)包含99个蛋白编码基因、8个rRNA和37个tRNA。同时,我们还通过分析鉴定出了 54 个简单序列重复序列。系统进化分析结果表明,E. chionantha 与 Macleaya microcarpa、Coreanomecon hylomeconoides、Hylomecon japonica 和 Chelidonium majus 这四个不同的物种关系密切。此外,利用木村双参数模型,我们成功地确定了五个超变区(ycf4-cemA、ycf3-trnS-GGA、trnC-GCA-petN、rpl32-trnL-UAG 和 psbI-trnS-UGA)。据我们所知,这是首次报道 E. chionantha 的完整叶绿体基因组,为从叶绿体基因组的角度进一步了解 E. chionantha 提供了科学参考,并为今后该物种的鉴定、分类确定和进化分析奠定了坚实的基础。
The complete chloroplast genome sequence and phylogenetic relationship analysis of Eomecon chionantha, one species unique to China
Eomecon chionantha Hance, an endemic species in China, has a long medical history in Chinese ethnic minority medicine and is known for its anti-inflammatory and analgesic effects. However, studies of E. chionantha are lacking. In this study, we investigated the characteristics of the E. chionantha chloroplast genome and determined the taxonomic position of E. chionantha in Papaveraceae via phylogenetic analysis. In addition, we determined molecular markers to identify E. chionantha at the molecular level by comparing the chloroplast genomes of E. chionantha and its closely related species. The complete chloroplast genomic information indicated that E. chionantha chloroplast DNA (178,808 bp) contains 99 protein-coding genes, 8 rRNAs, and 37 tRNAs. Meanwhile, we were able to identify a total of 54 simple sequence repeats through our analysis. Our findings from the phylogenetic analysis suggest that E. chionantha shares a close relationship with four distinct species, namely Macleaya microcarpa, Coreanomecon hylomeconoides, Hylomecon japonica, and Chelidonium majus. Additionally, using the Kimura two-parameter model, we successfully identified five hypervariable regions (ycf4-cemA, ycf3-trnS-GGA, trnC-GCA-petN, rpl32-trnL-UAG, and psbI-trnS-UGA). To the best of our knowledge, this is the first report of the complete chloroplast genome of E. chionantha, providing a scientific reference for further understanding of E. chionantha from the perspective of the chloroplast genome and establishing a solid foundation for the future identification, taxonomic determination and evolutionary analysis of this species.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.