Marcus W. Beck, Jill M. Arriola, Maria Herrmann, Raymond G. Najjar
{"title":"根据溶解氧数据拟合代谢模型:河口贝叶斯单站估算法","authors":"Marcus W. Beck, Jill M. Arriola, Maria Herrmann, Raymond G. Najjar","doi":"10.1002/lom3.10620","DOIUrl":null,"url":null,"abstract":"<p>Continuous measurements of dissolved oxygen (DO) are useful for quantifying ecosystem metabolism, which is critical for understanding estuarine biogeochemistry and ecology, but current methods applied to these data may lead to estimates that are physically impossible and poorly constrained errors. Here, we present a new approach for estimating estuarine metabolism: Estuarine BAyesian Single-station Estimation (EBASE). EBASE applies a Bayesian framework to a simple process-based model and DO observations, allowing the estimation of critical model parameters, specifically light efficiency and respiration, as informed by a set of prior distributions. EBASE improves upon the stream-based model from which it was derived by accommodating missing DO data and allowing the user to set the time period over which parameters are estimated. We demonstrate that EBASE can recover known metabolic parameters from a synthetic time series, even in the presence of noise (e.g., due to tidal advection) and when prior distributions are uninformed. Optimization periods of 7 and 30 d are more preferable than 1 d. A comparison with the more-conventional method of Odum reveals the ability of EBASE to avoid unphysical results (such as negative photosynthesis and respiration) and improves when the DO data are detided. EBASE is available using open-source software (R) and can be readily applied to multiple years of long-term monitoring data that are available in many estuaries. Overall, EBASE provides an accessible method to parameterize a simple metabolic model appropriate for estuarine systems and will provide additional understanding of processes that influence ecosystem status and condition.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"22 8","pages":"590-607"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10620","citationCount":"0","resultStr":"{\"title\":\"Fitting metabolic models to dissolved oxygen data: The estuarine Bayesian single-station estimation method\",\"authors\":\"Marcus W. Beck, Jill M. Arriola, Maria Herrmann, Raymond G. Najjar\",\"doi\":\"10.1002/lom3.10620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuous measurements of dissolved oxygen (DO) are useful for quantifying ecosystem metabolism, which is critical for understanding estuarine biogeochemistry and ecology, but current methods applied to these data may lead to estimates that are physically impossible and poorly constrained errors. Here, we present a new approach for estimating estuarine metabolism: Estuarine BAyesian Single-station Estimation (EBASE). EBASE applies a Bayesian framework to a simple process-based model and DO observations, allowing the estimation of critical model parameters, specifically light efficiency and respiration, as informed by a set of prior distributions. EBASE improves upon the stream-based model from which it was derived by accommodating missing DO data and allowing the user to set the time period over which parameters are estimated. We demonstrate that EBASE can recover known metabolic parameters from a synthetic time series, even in the presence of noise (e.g., due to tidal advection) and when prior distributions are uninformed. Optimization periods of 7 and 30 d are more preferable than 1 d. A comparison with the more-conventional method of Odum reveals the ability of EBASE to avoid unphysical results (such as negative photosynthesis and respiration) and improves when the DO data are detided. EBASE is available using open-source software (R) and can be readily applied to multiple years of long-term monitoring data that are available in many estuaries. Overall, EBASE provides an accessible method to parameterize a simple metabolic model appropriate for estuarine systems and will provide additional understanding of processes that influence ecosystem status and condition.</p>\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"22 8\",\"pages\":\"590-607\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10620\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10620\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10620","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Fitting metabolic models to dissolved oxygen data: The estuarine Bayesian single-station estimation method
Continuous measurements of dissolved oxygen (DO) are useful for quantifying ecosystem metabolism, which is critical for understanding estuarine biogeochemistry and ecology, but current methods applied to these data may lead to estimates that are physically impossible and poorly constrained errors. Here, we present a new approach for estimating estuarine metabolism: Estuarine BAyesian Single-station Estimation (EBASE). EBASE applies a Bayesian framework to a simple process-based model and DO observations, allowing the estimation of critical model parameters, specifically light efficiency and respiration, as informed by a set of prior distributions. EBASE improves upon the stream-based model from which it was derived by accommodating missing DO data and allowing the user to set the time period over which parameters are estimated. We demonstrate that EBASE can recover known metabolic parameters from a synthetic time series, even in the presence of noise (e.g., due to tidal advection) and when prior distributions are uninformed. Optimization periods of 7 and 30 d are more preferable than 1 d. A comparison with the more-conventional method of Odum reveals the ability of EBASE to avoid unphysical results (such as negative photosynthesis and respiration) and improves when the DO data are detided. EBASE is available using open-source software (R) and can be readily applied to multiple years of long-term monitoring data that are available in many estuaries. Overall, EBASE provides an accessible method to parameterize a simple metabolic model appropriate for estuarine systems and will provide additional understanding of processes that influence ecosystem status and condition.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.