{"title":"超声波处理和微过滤处理对大王椰子(Cocos nucifera var.","authors":"Ranahansi Rangadharee Bandara, Thirani Sasmini, Dilani Thilanka Hewa Pathirana, Chandi Yalegama, Melani Arachchige, Maathumai Sivaji","doi":"10.1177/10820132241248480","DOIUrl":null,"url":null,"abstract":"The study aimed to investigate the effect of thermal and non-thermal processing on the physicochemical, microbial, and sensory characteristics of king coconut water. King coconut water samples were subjected to ultrasonication (50 kHz, 30 min at 35 °C), microfiltration (0.5 µm), and thermal treatments (at 90 °C for 10 min) with sodium metabisulfite (0.1 g/L) except the fresh sample (control). Samples were tested for physiochemical, microbial, and sensory parameters. Storage studies were conducted at 4 °C for 28 days. pH, titratable acidity, and total sugar of all treated samples were within the Sri Lankan Standard (SLS) limit (4.6–5.5, 0.07–0.1%, 4.1–6.5%, respectively) during the 28 days of storage. Sodium metabisulfite addition was significant in lowering the browning index. Antioxidant and phenolic contents of microfiltered and ultrasonicated samples varied between 49%–65% and 2.5−2.8 GAE mg/100 mL, respectively, during 4 weeks of storage, which was significantly higher compared to the heat-treated samples. Sensory evaluation scored the lowest attribute values for thermally treated samples. Microbial analyses indicated that microfiltered and ultrasonicated king coconut water remained safe for consumption for up to 4 weeks. Ultrasound and microfiltration, with the integration of sodium metabisulfite, were identified as effective methods for processing king coconut water while preserving its wholesome properties.","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":"16 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation on the effect of ultrasonication and microfiltration processing on the quality of king coconut (Cocos nucifera var. aurantiaca) water compared to minimal and thermal processing\",\"authors\":\"Ranahansi Rangadharee Bandara, Thirani Sasmini, Dilani Thilanka Hewa Pathirana, Chandi Yalegama, Melani Arachchige, Maathumai Sivaji\",\"doi\":\"10.1177/10820132241248480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed to investigate the effect of thermal and non-thermal processing on the physicochemical, microbial, and sensory characteristics of king coconut water. King coconut water samples were subjected to ultrasonication (50 kHz, 30 min at 35 °C), microfiltration (0.5 µm), and thermal treatments (at 90 °C for 10 min) with sodium metabisulfite (0.1 g/L) except the fresh sample (control). Samples were tested for physiochemical, microbial, and sensory parameters. Storage studies were conducted at 4 °C for 28 days. pH, titratable acidity, and total sugar of all treated samples were within the Sri Lankan Standard (SLS) limit (4.6–5.5, 0.07–0.1%, 4.1–6.5%, respectively) during the 28 days of storage. Sodium metabisulfite addition was significant in lowering the browning index. Antioxidant and phenolic contents of microfiltered and ultrasonicated samples varied between 49%–65% and 2.5−2.8 GAE mg/100 mL, respectively, during 4 weeks of storage, which was significantly higher compared to the heat-treated samples. Sensory evaluation scored the lowest attribute values for thermally treated samples. Microbial analyses indicated that microfiltered and ultrasonicated king coconut water remained safe for consumption for up to 4 weeks. Ultrasound and microfiltration, with the integration of sodium metabisulfite, were identified as effective methods for processing king coconut water while preserving its wholesome properties.\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132241248480\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132241248480","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
An investigation on the effect of ultrasonication and microfiltration processing on the quality of king coconut (Cocos nucifera var. aurantiaca) water compared to minimal and thermal processing
The study aimed to investigate the effect of thermal and non-thermal processing on the physicochemical, microbial, and sensory characteristics of king coconut water. King coconut water samples were subjected to ultrasonication (50 kHz, 30 min at 35 °C), microfiltration (0.5 µm), and thermal treatments (at 90 °C for 10 min) with sodium metabisulfite (0.1 g/L) except the fresh sample (control). Samples were tested for physiochemical, microbial, and sensory parameters. Storage studies were conducted at 4 °C for 28 days. pH, titratable acidity, and total sugar of all treated samples were within the Sri Lankan Standard (SLS) limit (4.6–5.5, 0.07–0.1%, 4.1–6.5%, respectively) during the 28 days of storage. Sodium metabisulfite addition was significant in lowering the browning index. Antioxidant and phenolic contents of microfiltered and ultrasonicated samples varied between 49%–65% and 2.5−2.8 GAE mg/100 mL, respectively, during 4 weeks of storage, which was significantly higher compared to the heat-treated samples. Sensory evaluation scored the lowest attribute values for thermally treated samples. Microbial analyses indicated that microfiltered and ultrasonicated king coconut water remained safe for consumption for up to 4 weeks. Ultrasound and microfiltration, with the integration of sodium metabisulfite, were identified as effective methods for processing king coconut water while preserving its wholesome properties.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).