{"title":"高性能磁性 Fe3O4/SiO2-NH2 纳米复合材料:合成及其在去除水中 Zn2+ 离子中的应用","authors":"Meiping Wang","doi":"10.3103/S1063455X24020139","DOIUrl":null,"url":null,"abstract":"<p>In this study, magnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-NH<sub>2</sub> (FSN) nanocomposite adsorbent was synthesized using a green and convenient method. The FSN adsorbent was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and vibrating-sample magnetometry (VSM). The FSN nanocomposites exhibit excellent Zn<sup>2+</sup> adsorption capacity. In addition, adsorption kinetics, isotherms, and adsorption mechanism of Zn<sup>2+</sup> on the FSN nanocomposites were also studied. The FSN nanocomposites show rapid adsorption rate, easy separation process, and environmental friendliness, which are suitable for water and wastewater purification.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Magnetic Fe3O4/SiO2-NH2 Nanocomposites: Synthesis and Application for the Removal of Zn2+ Ions from Water\",\"authors\":\"Meiping Wang\",\"doi\":\"10.3103/S1063455X24020139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, magnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-NH<sub>2</sub> (FSN) nanocomposite adsorbent was synthesized using a green and convenient method. The FSN adsorbent was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and vibrating-sample magnetometry (VSM). The FSN nanocomposites exhibit excellent Zn<sup>2+</sup> adsorption capacity. In addition, adsorption kinetics, isotherms, and adsorption mechanism of Zn<sup>2+</sup> on the FSN nanocomposites were also studied. The FSN nanocomposites show rapid adsorption rate, easy separation process, and environmental friendliness, which are suitable for water and wastewater purification.</p>\",\"PeriodicalId\":680,\"journal\":{\"name\":\"Journal of Water Chemistry and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Chemistry and Technology\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1063455X24020139\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24020139","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
High-Performance Magnetic Fe3O4/SiO2-NH2 Nanocomposites: Synthesis and Application for the Removal of Zn2+ Ions from Water
In this study, magnetic Fe3O4@SiO2-NH2 (FSN) nanocomposite adsorbent was synthesized using a green and convenient method. The FSN adsorbent was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, and vibrating-sample magnetometry (VSM). The FSN nanocomposites exhibit excellent Zn2+ adsorption capacity. In addition, adsorption kinetics, isotherms, and adsorption mechanism of Zn2+ on the FSN nanocomposites were also studied. The FSN nanocomposites show rapid adsorption rate, easy separation process, and environmental friendliness, which are suitable for water and wastewater purification.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.