{"title":"脂质双层膜中膜粘度与配体结合受体动力学之间的相互作用","authors":"Chiara Bernard, Angelo Rosario Carotenuto, Nicola Maria Pugno, Luca Deseri, Massimiliano Fraldi","doi":"10.1007/s11012-024-01779-1","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma membranes appear as deformable systems wherein molecules are free to move and diffuse giving rise to condensed microdomains (composed of ordered lipids, transmembrane proteins and cholesterol) surrounded by disordered lipid molecules. Such denser and thicker regions, namely lipid rafts, are important communication hubs for cells. Indeed, recent experiments revealed how the most of active signaling proteins co-localize on such domains, thereby intensifying the biochemical trafficking of substances. From a material standpoint, it is reasonable to assume the bilayer as a visco-elastic body accounting for both in-plane fluidity and elasticity. Consequently, lipid rafts contribute to membrane heterogeneity by typically exhibiting higher stiffness and viscosity and by locally altering the bilayer dynamics and proteins activity. A chemo-mechanical model of lipid bilayer coupled with interspecific dynamics among the resident species (typically transmembrane receptors and trasporters) has been recently formulated to explain and predict how proteins regulate the dynamic heterogeneity of membrane. However, the explicit inclusion of the membrane viscosity in the model was not considered. To this aim, the present work enriches the constitutive description of the bilayer by modeling its visco-elastic behavior. This is done through a strain-level dependent viscosity able to theoretically trace back the alteration of membrane fluidity experimentally observed in lipid phase transitions. This provides new insights into how the quasi-solid and fluid components of lipid membrane response interact with the evolution of resident proteins by affecting the activity of raft domains, with effects on cell mechano-signaling.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 8","pages":"1231 - 1253"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11012-024-01779-1.pdf","citationCount":"0","resultStr":"{\"title\":\"The interplay between membrane viscosity and ligand-binding receptor kinetics in lipid bilayers\",\"authors\":\"Chiara Bernard, Angelo Rosario Carotenuto, Nicola Maria Pugno, Luca Deseri, Massimiliano Fraldi\",\"doi\":\"10.1007/s11012-024-01779-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma membranes appear as deformable systems wherein molecules are free to move and diffuse giving rise to condensed microdomains (composed of ordered lipids, transmembrane proteins and cholesterol) surrounded by disordered lipid molecules. Such denser and thicker regions, namely lipid rafts, are important communication hubs for cells. Indeed, recent experiments revealed how the most of active signaling proteins co-localize on such domains, thereby intensifying the biochemical trafficking of substances. From a material standpoint, it is reasonable to assume the bilayer as a visco-elastic body accounting for both in-plane fluidity and elasticity. Consequently, lipid rafts contribute to membrane heterogeneity by typically exhibiting higher stiffness and viscosity and by locally altering the bilayer dynamics and proteins activity. A chemo-mechanical model of lipid bilayer coupled with interspecific dynamics among the resident species (typically transmembrane receptors and trasporters) has been recently formulated to explain and predict how proteins regulate the dynamic heterogeneity of membrane. However, the explicit inclusion of the membrane viscosity in the model was not considered. To this aim, the present work enriches the constitutive description of the bilayer by modeling its visco-elastic behavior. This is done through a strain-level dependent viscosity able to theoretically trace back the alteration of membrane fluidity experimentally observed in lipid phase transitions. This provides new insights into how the quasi-solid and fluid components of lipid membrane response interact with the evolution of resident proteins by affecting the activity of raft domains, with effects on cell mechano-signaling.</p></div>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"59 8\",\"pages\":\"1231 - 1253\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11012-024-01779-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11012-024-01779-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01779-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
The interplay between membrane viscosity and ligand-binding receptor kinetics in lipid bilayers
Plasma membranes appear as deformable systems wherein molecules are free to move and diffuse giving rise to condensed microdomains (composed of ordered lipids, transmembrane proteins and cholesterol) surrounded by disordered lipid molecules. Such denser and thicker regions, namely lipid rafts, are important communication hubs for cells. Indeed, recent experiments revealed how the most of active signaling proteins co-localize on such domains, thereby intensifying the biochemical trafficking of substances. From a material standpoint, it is reasonable to assume the bilayer as a visco-elastic body accounting for both in-plane fluidity and elasticity. Consequently, lipid rafts contribute to membrane heterogeneity by typically exhibiting higher stiffness and viscosity and by locally altering the bilayer dynamics and proteins activity. A chemo-mechanical model of lipid bilayer coupled with interspecific dynamics among the resident species (typically transmembrane receptors and trasporters) has been recently formulated to explain and predict how proteins regulate the dynamic heterogeneity of membrane. However, the explicit inclusion of the membrane viscosity in the model was not considered. To this aim, the present work enriches the constitutive description of the bilayer by modeling its visco-elastic behavior. This is done through a strain-level dependent viscosity able to theoretically trace back the alteration of membrane fluidity experimentally observed in lipid phase transitions. This provides new insights into how the quasi-solid and fluid components of lipid membrane response interact with the evolution of resident proteins by affecting the activity of raft domains, with effects on cell mechano-signaling.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.