Joseph L. Pegler, John W. Patrick, Benjamin McDermott, Anthony Brown, Jackson M. J. Oultram, Christopher P. L. Grof, John M. Ward
{"title":"Phaseolus vulgaris STP13.1 是一种 H+ 偶联单糖转运体,存在于源叶和种皮中,在去极化电位时具有更高的底物亲和力","authors":"Joseph L. Pegler, John W. Patrick, Benjamin McDermott, Anthony Brown, Jackson M. J. Oultram, Christopher P. L. Grof, John M. Ward","doi":"10.1002/pld3.585","DOIUrl":null,"url":null,"abstract":"Sugar transport proteins (STPs) are high‐affinity H<jats:sup>+</jats:sup>‐coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of <jats:styled-content style=\"fixed-case\"><jats:italic>Phaseolus vulgaris</jats:italic></jats:styled-content> <jats:italic>L</jats:italic>. (common bean) revealed that <jats:italic>PvSTP13.1</jats:italic> was expressed in source leaves and seed coats throughout seed development. In contrast, <jats:italic>PvSTP13.1</jats:italic> transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in <jats:styled-content style=\"fixed-case\"><jats:italic>Xenopus laevis</jats:italic></jats:styled-content> oocytes, and inward‐directed currents were analyzed using two‐electrode voltage clamping. PvSTP13.1 was shown to function as an H<jats:sup>+</jats:sup>‐coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3‐O‐methyl‐D‐glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (<jats:italic>K</jats:italic><jats:sub>0.5</jats:sub>) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of −40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"52 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phaseolus vulgaris STP13.1 is an H+‐coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials\",\"authors\":\"Joseph L. Pegler, John W. Patrick, Benjamin McDermott, Anthony Brown, Jackson M. J. Oultram, Christopher P. L. Grof, John M. Ward\",\"doi\":\"10.1002/pld3.585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugar transport proteins (STPs) are high‐affinity H<jats:sup>+</jats:sup>‐coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of <jats:styled-content style=\\\"fixed-case\\\"><jats:italic>Phaseolus vulgaris</jats:italic></jats:styled-content> <jats:italic>L</jats:italic>. (common bean) revealed that <jats:italic>PvSTP13.1</jats:italic> was expressed in source leaves and seed coats throughout seed development. In contrast, <jats:italic>PvSTP13.1</jats:italic> transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in <jats:styled-content style=\\\"fixed-case\\\"><jats:italic>Xenopus laevis</jats:italic></jats:styled-content> oocytes, and inward‐directed currents were analyzed using two‐electrode voltage clamping. PvSTP13.1 was shown to function as an H<jats:sup>+</jats:sup>‐coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3‐O‐methyl‐D‐glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (<jats:italic>K</jats:italic><jats:sub>0.5</jats:sub>) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of −40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.585\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.585","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Phaseolus vulgaris STP13.1 is an H+‐coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials
Sugar transport proteins (STPs) are high‐affinity H+‐coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgarisL. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward‐directed currents were analyzed using two‐electrode voltage clamping. PvSTP13.1 was shown to function as an H+‐coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3‐O‐methyl‐D‐glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of −40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.