Phenix-AlphaFold 网络服务:将 AlphaFold 预测用于 Phenix

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2024-04-22 DOI:10.1002/pro.4992
Billy K. Poon, Thomas C. Terwilliger, Paul D. Adams
{"title":"Phenix-AlphaFold 网络服务:将 AlphaFold 预测用于 Phenix","authors":"Billy K. Poon, Thomas C. Terwilliger, Paul D. Adams","doi":"10.1002/pro.4992","DOIUrl":null,"url":null,"abstract":"Advances in machine learning have enabled sufficiently accurate predictions of protein structure to be used in macromolecular structure determination with crystallography and cryo‐electron microscopy data. The Phenix software suite has AlphaFold predictions integrated into an automated pipeline that can start with an amino acid sequence and data, and automatically perform model‐building and refinement to return a protein model fitted into the data. Due to the steep technical requirements of running AlphaFold efficiently, we have implemented a Phenix‐AlphaFold webservice that enables all Phenix users to run AlphaFold predictions remotely from the Phenix GUI starting with the official 1.21 release. This webservice will be improved based on how it is used by the research community and the future research directions for Phenix.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Phenix‐AlphaFold webservice: Enabling AlphaFold predictions for use in Phenix\",\"authors\":\"Billy K. Poon, Thomas C. Terwilliger, Paul D. Adams\",\"doi\":\"10.1002/pro.4992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in machine learning have enabled sufficiently accurate predictions of protein structure to be used in macromolecular structure determination with crystallography and cryo‐electron microscopy data. The Phenix software suite has AlphaFold predictions integrated into an automated pipeline that can start with an amino acid sequence and data, and automatically perform model‐building and refinement to return a protein model fitted into the data. Due to the steep technical requirements of running AlphaFold efficiently, we have implemented a Phenix‐AlphaFold webservice that enables all Phenix users to run AlphaFold predictions remotely from the Phenix GUI starting with the official 1.21 release. This webservice will be improved based on how it is used by the research community and the future research directions for Phenix.\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.4992\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.4992","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机器学习技术的进步使蛋白质结构预测足够准确,可用于利用晶体学和冷冻电镜数据确定大分子结构。Phenix 软件套件已将 AlphaFold 预测集成到一个自动管道中,该管道可以从氨基酸序列和数据开始,自动执行模型构建和完善,以返回与数据相匹配的蛋白质模型。由于高效运行 AlphaFold 需要很高的技术要求,我们已经实现了 Phenix-AlphaFold 网络服务,从 1.21 正式版开始,所有 Phenix 用户都可以通过 Phenix GUI 远程运行 AlphaFold 预测。我们将根据研究界的使用情况和 Phenix 的未来研究方向对该网络服务进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Phenix‐AlphaFold webservice: Enabling AlphaFold predictions for use in Phenix
Advances in machine learning have enabled sufficiently accurate predictions of protein structure to be used in macromolecular structure determination with crystallography and cryo‐electron microscopy data. The Phenix software suite has AlphaFold predictions integrated into an automated pipeline that can start with an amino acid sequence and data, and automatically perform model‐building and refinement to return a protein model fitted into the data. Due to the steep technical requirements of running AlphaFold efficiently, we have implemented a Phenix‐AlphaFold webservice that enables all Phenix users to run AlphaFold predictions remotely from the Phenix GUI starting with the official 1.21 release. This webservice will be improved based on how it is used by the research community and the future research directions for Phenix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信