Prof. Dr. Xiaolin Zhu, Yihui Jia, Yuhan Liu, Dr. Jingyi Xu, Huarui He, Siyue Wang, Yang Shao, Prof. Dr. Yaxin Zhai, Prof. Dr. Yongfa Zhu
{"title":"通过分子对称性调制增强超分子光催化剂的内置电场,实现高效光催化氢气转化","authors":"Prof. Dr. Xiaolin Zhu, Yihui Jia, Yuhan Liu, Dr. Jingyi Xu, Huarui He, Siyue Wang, Yang Shao, Prof. Dr. Yaxin Zhai, Prof. Dr. Yongfa Zhu","doi":"10.1002/anie.202405962","DOIUrl":null,"url":null,"abstract":"<p>Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst <b>SA-DADK-H<sup>+</sup></b> was developed. The unsymmetric protonation breaks the initial structural symmetry of <b>DADK</b>, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within <b>SA-DADK-H<sup>+</sup></b>. The protonation process also creates numerous active sites for H<sub>2</sub>O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, <b>SA-DADK-H<sup>+</sup></b> exhibits an outstanding hydrogen evolution rate of 278.2 mmol g<sup>−1</sup> h<sup>−1</sup> and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the <i>state-of-the-art</i> performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 26","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution\",\"authors\":\"Prof. Dr. Xiaolin Zhu, Yihui Jia, Yuhan Liu, Dr. Jingyi Xu, Huarui He, Siyue Wang, Yang Shao, Prof. Dr. Yaxin Zhai, Prof. Dr. Yongfa Zhu\",\"doi\":\"10.1002/anie.202405962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst <b>SA-DADK-H<sup>+</sup></b> was developed. The unsymmetric protonation breaks the initial structural symmetry of <b>DADK</b>, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within <b>SA-DADK-H<sup>+</sup></b>. The protonation process also creates numerous active sites for H<sub>2</sub>O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, <b>SA-DADK-H<sup>+</sup></b> exhibits an outstanding hydrogen evolution rate of 278.2 mmol g<sup>−1</sup> h<sup>−1</sup> and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the <i>state-of-the-art</i> performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 26\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405962\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution
Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst SA-DADK-H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA-DADK-H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA-DADK-H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g−1 h−1 and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the state-of-the-art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.