通过分子对称性调制增强超分子光催化剂的内置电场,实现高效光催化氢气转化

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Prof. Dr. Xiaolin Zhu, Yihui Jia, Yuhan Liu, Dr. Jingyi Xu, Huarui He, Siyue Wang, Yang Shao, Prof. Dr. Yaxin Zhai, Prof. Dr. Yongfa Zhu
{"title":"通过分子对称性调制增强超分子光催化剂的内置电场,实现高效光催化氢气转化","authors":"Prof. Dr. Xiaolin Zhu,&nbsp;Yihui Jia,&nbsp;Yuhan Liu,&nbsp;Dr. Jingyi Xu,&nbsp;Huarui He,&nbsp;Siyue Wang,&nbsp;Yang Shao,&nbsp;Prof. Dr. Yaxin Zhai,&nbsp;Prof. Dr. Yongfa Zhu","doi":"10.1002/anie.202405962","DOIUrl":null,"url":null,"abstract":"<p>Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst <b>SA-DADK-H<sup>+</sup></b> was developed. The unsymmetric protonation breaks the initial structural symmetry of <b>DADK</b>, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within <b>SA-DADK-H<sup>+</sup></b>. The protonation process also creates numerous active sites for H<sub>2</sub>O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, <b>SA-DADK-H<sup>+</sup></b> exhibits an outstanding hydrogen evolution rate of 278.2 mmol g<sup>−1</sup> h<sup>−1</sup> and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the <i>state-of-the-art</i> performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 26","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution\",\"authors\":\"Prof. Dr. Xiaolin Zhu,&nbsp;Yihui Jia,&nbsp;Yuhan Liu,&nbsp;Dr. Jingyi Xu,&nbsp;Huarui He,&nbsp;Siyue Wang,&nbsp;Yang Shao,&nbsp;Prof. Dr. Yaxin Zhai,&nbsp;Prof. Dr. Yongfa Zhu\",\"doi\":\"10.1002/anie.202405962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst <b>SA-DADK-H<sup>+</sup></b> was developed. The unsymmetric protonation breaks the initial structural symmetry of <b>DADK</b>, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within <b>SA-DADK-H<sup>+</sup></b>. The protonation process also creates numerous active sites for H<sub>2</sub>O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, <b>SA-DADK-H<sup>+</sup></b> exhibits an outstanding hydrogen evolution rate of 278.2 mmol g<sup>−1</sup> h<sup>−1</sup> and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the <i>state-of-the-art</i> performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 26\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405962\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202405962","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受自然启发的超分子自组装是一种极具吸引力的光催化剂,但其量子产率却因电荷分离和传输能力差而受到限制。通过打破对称性来增强内置电场是实现高效电荷转移的一种可行策略。在此,我们开发了一种非对称质子化、N-杂环π-共轭蒽唑啉基超分子光催化剂 SA-DADK-H+。非对称质子化打破了 DADK 的初始结构对称性,使分子偶极子增加了约 50 倍,促进了 SA-DADK-H+ 内电荷的有效分离和转移。质子化过程还为 H2O 的吸附创造了大量的活性位点,并成为重要的质子中继站,从而显著提高了光催化效率。值得注意的是,SA-DADK-H+ 的氢气进化速率高达 278.2 mmol g-1 h-1,在 450 纳米波长下的表观量子效率为 25.1%,跻身有机半导体光催化剂的先进行列。此外,不对称质子化方法的多功能性已成功应用于其他四种光催化剂,使其光催化性能提高了 39 至 533 倍。这些发现凸显了非对称质子化诱导对称性破坏策略在定制超分子光催化剂以高效生产太阳能燃料方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution

Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution

Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst SA-DADK-H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA-DADK-H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA-DADK-H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g−1 h−1 and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the state-of-the-art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信