C.L. Faithfull , E. Tamarit , P. Nordling , E. Kraft
{"title":"恢复叶绿体仍然是一项挑战:呼吁制定成功的方法","authors":"C.L. Faithfull , E. Tamarit , P. Nordling , E. Kraft","doi":"10.1016/j.aquabot.2024.103777","DOIUrl":null,"url":null,"abstract":"<div><p>Submerged aquatic vegetation, and especially charophytes, which are an important habitat for many species, have declined in the Baltic Sea due to changes in light climate, eutrophication and physical disturbance. Physical disturbance in the form of small-scale dredging activities is commonplace in Sweden due to land uplift, but causes fragmentation of coastal habitats. Here we test three planting methods for restoration of the charophyte <em>Chara aspera</em> on an area of deposited sediment, and a single method for restoration of <em>C. tomentosa</em> in a dredged area. We found that none of the planting methods tested was more successful than natural recolonization of <em>C. aspera</em> on the deposited sediment. <em>C. tomentosa</em> planting was unsuccessful in the dredged area and was likely outcompeted for light by taller species. The <em>C. aspera</em> meadow was resilient to smaller disturbances, as experimental removal of up to 2.5% of <em>C. aspera</em> and sediment from the donor area did not reduce <em>C. aspera</em> coverage a month after removal. Even after an uncontrolled event that removed up to 50% of <em>C. aspera</em> in the experimental plots, <em>C. aspera</em> coverage had returned to pre-removal levels a year after the disturbance. We suggest future restoration experiments test transplanting sediment rich in oocytes and bulbils into areas with suitable light climates and low competition with other species. Restoration efforts are costly and highly uncertain of success, therefore we recommend discontinuing dredging activities in charophyte meadows to protect this important habitat.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304377024000299/pdfft?md5=3ec451913b33b8d1f48ab929a41314b9&pid=1-s2.0-S0304377024000299-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Restoring charophytes is still a challenge: A call for developing successful methods\",\"authors\":\"C.L. Faithfull , E. Tamarit , P. Nordling , E. Kraft\",\"doi\":\"10.1016/j.aquabot.2024.103777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Submerged aquatic vegetation, and especially charophytes, which are an important habitat for many species, have declined in the Baltic Sea due to changes in light climate, eutrophication and physical disturbance. Physical disturbance in the form of small-scale dredging activities is commonplace in Sweden due to land uplift, but causes fragmentation of coastal habitats. Here we test three planting methods for restoration of the charophyte <em>Chara aspera</em> on an area of deposited sediment, and a single method for restoration of <em>C. tomentosa</em> in a dredged area. We found that none of the planting methods tested was more successful than natural recolonization of <em>C. aspera</em> on the deposited sediment. <em>C. tomentosa</em> planting was unsuccessful in the dredged area and was likely outcompeted for light by taller species. The <em>C. aspera</em> meadow was resilient to smaller disturbances, as experimental removal of up to 2.5% of <em>C. aspera</em> and sediment from the donor area did not reduce <em>C. aspera</em> coverage a month after removal. Even after an uncontrolled event that removed up to 50% of <em>C. aspera</em> in the experimental plots, <em>C. aspera</em> coverage had returned to pre-removal levels a year after the disturbance. We suggest future restoration experiments test transplanting sediment rich in oocytes and bulbils into areas with suitable light climates and low competition with other species. Restoration efforts are costly and highly uncertain of success, therefore we recommend discontinuing dredging activities in charophyte meadows to protect this important habitat.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000299/pdfft?md5=3ec451913b33b8d1f48ab929a41314b9&pid=1-s2.0-S0304377024000299-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000299\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Restoring charophytes is still a challenge: A call for developing successful methods
Submerged aquatic vegetation, and especially charophytes, which are an important habitat for many species, have declined in the Baltic Sea due to changes in light climate, eutrophication and physical disturbance. Physical disturbance in the form of small-scale dredging activities is commonplace in Sweden due to land uplift, but causes fragmentation of coastal habitats. Here we test three planting methods for restoration of the charophyte Chara aspera on an area of deposited sediment, and a single method for restoration of C. tomentosa in a dredged area. We found that none of the planting methods tested was more successful than natural recolonization of C. aspera on the deposited sediment. C. tomentosa planting was unsuccessful in the dredged area and was likely outcompeted for light by taller species. The C. aspera meadow was resilient to smaller disturbances, as experimental removal of up to 2.5% of C. aspera and sediment from the donor area did not reduce C. aspera coverage a month after removal. Even after an uncontrolled event that removed up to 50% of C. aspera in the experimental plots, C. aspera coverage had returned to pre-removal levels a year after the disturbance. We suggest future restoration experiments test transplanting sediment rich in oocytes and bulbils into areas with suitable light climates and low competition with other species. Restoration efforts are costly and highly uncertain of success, therefore we recommend discontinuing dredging activities in charophyte meadows to protect this important habitat.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.