Ziwei Chen , Dongcheng Cai , Yifan Xie , Jiajun Zhong , Mengge Wu , Huijun Yang , Jie Feng , Hong Lian , Kefei Dou , Yu Nie
{"title":"三碘甲状腺原氨酸会诱导单核细胞/巨噬细胞产生促炎作用,阻碍心脏再生","authors":"Ziwei Chen , Dongcheng Cai , Yifan Xie , Jiajun Zhong , Mengge Wu , Huijun Yang , Jie Feng , Hong Lian , Kefei Dou , Yu Nie","doi":"10.1016/j.yjmcc.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes <em>in vitro</em>. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.</p></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"191 ","pages":"Pages 7-11"},"PeriodicalIF":4.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022282824000518/pdfft?md5=552000b551ea176b044354e218f261d8&pid=1-s2.0-S0022282824000518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Triiodothyronine induces a proinflammatory monocyte/macrophage profile and impedes cardiac regeneration\",\"authors\":\"Ziwei Chen , Dongcheng Cai , Yifan Xie , Jiajun Zhong , Mengge Wu , Huijun Yang , Jie Feng , Hong Lian , Kefei Dou , Yu Nie\",\"doi\":\"10.1016/j.yjmcc.2024.04.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes <em>in vitro</em>. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.</p></div>\",\"PeriodicalId\":16402,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology\",\"volume\":\"191 \",\"pages\":\"Pages 7-11\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022282824000518/pdfft?md5=552000b551ea176b044354e218f261d8&pid=1-s2.0-S0022282824000518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022282824000518\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824000518","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Triiodothyronine induces a proinflammatory monocyte/macrophage profile and impedes cardiac regeneration
Neonatal mouse hearts can regenerate post-injury, unlike adult hearts that form fibrotic scars. The mechanism of thyroid hormone signaling in cardiac regeneration warrants further study. We found that triiodothyronine impairs cardiomyocyte proliferation and heart regeneration in neonatal mice after apical resection. Single-cell RNA-Sequencing on cardiac CD45-positive leukocytes revealed a pro-inflammatory phenotype in monocytes/macrophages after triiodothyronine treatment. Furthermore, we observed that cardiomyocyte proliferation was inhibited by medium from triiodothyronine-treated macrophages, while triiodothyronine itself had no direct effect on the cardiomyocytes in vitro. Our study unveils a novel role of triiodothyronine in mediating the inflammatory response that hinders heart regeneration.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.