三重扰动一致矩阵及其右主特征向量的效率

IF 3.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rosário Fernandes , Susana Palheira
{"title":"三重扰动一致矩阵及其右主特征向量的效率","authors":"Rosário Fernandes ,&nbsp;Susana Palheira","doi":"10.1016/j.ijar.2024.109204","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>A</em> be a pairwise comparison matrix obtained from a consistent one by perturbing three entries above the main diagonal, <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></math></span>, and the corresponding reciprocal entries, in a way that there is a submatrix of size 2 containing the three perturbed entries and not containing a diagonal entry. In this paper we describe the relations among <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></math></span> with which <em>A</em> always has its principal right eigenvector efficient. Previously, and only for a few cases of this problem, R. Fernandes and S. Furtado (2022) proved the efficiency of the principal right eigenvector of <em>A</em>. In this paper, we continue to use the strong connectivity of a certain digraph associated with <em>A</em> and its principal right eigenvector to characterize the vector efficiency. For completeness, we show that the existence of a sink in this digraph is equivalent to the inefficiency of the principal right eigenvector of <em>A</em>.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"170 ","pages":"Article 109204"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X24000914/pdfft?md5=d6b553917e677989eb4fbde615815e37&pid=1-s2.0-S0888613X24000914-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Triple perturbed consistent matrix and the efficiency of its principal right eigenvector\",\"authors\":\"Rosário Fernandes ,&nbsp;Susana Palheira\",\"doi\":\"10.1016/j.ijar.2024.109204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <em>A</em> be a pairwise comparison matrix obtained from a consistent one by perturbing three entries above the main diagonal, <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></math></span>, and the corresponding reciprocal entries, in a way that there is a submatrix of size 2 containing the three perturbed entries and not containing a diagonal entry. In this paper we describe the relations among <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></math></span> with which <em>A</em> always has its principal right eigenvector efficient. Previously, and only for a few cases of this problem, R. Fernandes and S. Furtado (2022) proved the efficiency of the principal right eigenvector of <em>A</em>. In this paper, we continue to use the strong connectivity of a certain digraph associated with <em>A</em> and its principal right eigenvector to characterize the vector efficiency. For completeness, we show that the existence of a sink in this digraph is equivalent to the inefficiency of the principal right eigenvector of <em>A</em>.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"170 \",\"pages\":\"Article 109204\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000914/pdfft?md5=d6b553917e677989eb4fbde615815e37&pid=1-s2.0-S0888613X24000914-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24000914\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24000914","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

假设 A 是一个成对比较矩阵,它是通过扰动主对角线上方的三个条目 x、y、z 以及相应的倒数条目而从一致矩阵中得到的,其方式是存在一个大小为 2 的子矩阵,其中包含三个扰动条目,且不包含对角线条目。在本文中,我们将描述 x、y、z 之间的关系,A 的主右特征向量总是有效的。此前,R. Fernandes 和 S. Furtado(2022 年)仅针对该问题的少数情况证明了 A 的主右特征向量的效率。在本文中,我们继续使用与 A 及其主右特征向量相关的某个数图的强连接性来描述向量效率。为完整起见,我们证明了该图中汇的存在等价于 A 的主右特征向量的无效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple perturbed consistent matrix and the efficiency of its principal right eigenvector

Let A be a pairwise comparison matrix obtained from a consistent one by perturbing three entries above the main diagonal, x,y,z, and the corresponding reciprocal entries, in a way that there is a submatrix of size 2 containing the three perturbed entries and not containing a diagonal entry. In this paper we describe the relations among x,y,z with which A always has its principal right eigenvector efficient. Previously, and only for a few cases of this problem, R. Fernandes and S. Furtado (2022) proved the efficiency of the principal right eigenvector of A. In this paper, we continue to use the strong connectivity of a certain digraph associated with A and its principal right eigenvector to characterize the vector efficiency. For completeness, we show that the existence of a sink in this digraph is equivalent to the inefficiency of the principal right eigenvector of A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信