卡莱森框架之谜

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Ole Christensen , Marzieh Hasannasab , Friedrich M. Philipp , Diana Stoeva
{"title":"卡莱森框架之谜","authors":"Ole Christensen ,&nbsp;Marzieh Hasannasab ,&nbsp;Friedrich M. Philipp ,&nbsp;Diana Stoeva","doi":"10.1016/j.acha.2024.101659","DOIUrl":null,"url":null,"abstract":"<div><p>In 2016 Aldroubi et al. constructed the first class of frames having the form <span><math><msubsup><mrow><mo>{</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>φ</mi><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> for a bounded linear operator on the underlying Hilbert space. In this paper we show that a subclass of these frames has a number of additional remarkable features that have not been identified for any other frames in the literature. Most importantly, the subfamily obtained by selecting each <em>N</em>th element from the frame is itself a frame, regardless of the choice of <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>. Furthermore, the frame property is kept upon removal of an arbitrarily finite number of elements.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"72 ","pages":"Article 101659"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mystery of Carleson frames\",\"authors\":\"Ole Christensen ,&nbsp;Marzieh Hasannasab ,&nbsp;Friedrich M. Philipp ,&nbsp;Diana Stoeva\",\"doi\":\"10.1016/j.acha.2024.101659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2016 Aldroubi et al. constructed the first class of frames having the form <span><math><msubsup><mrow><mo>{</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>k</mi></mrow></msup><mi>φ</mi><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>∞</mo></mrow></msubsup></math></span> for a bounded linear operator on the underlying Hilbert space. In this paper we show that a subclass of these frames has a number of additional remarkable features that have not been identified for any other frames in the literature. Most importantly, the subfamily obtained by selecting each <em>N</em>th element from the frame is itself a frame, regardless of the choice of <span><math><mi>N</mi><mo>∈</mo><mi>N</mi></math></span>. Furthermore, the frame property is kept upon removal of an arbitrarily finite number of elements.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"72 \",\"pages\":\"Article 101659\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000368\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000368","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

2016 年,Aldroubi 等人构建了第一类框架,其形式为底层希尔伯特空间上有界线性算子的{Tkφ}k=0∞。在本文中,我们证明了这些框架的一个子类具有一些额外的显著特征,而这些特征在文献中还没有为任何其他框架所发现。最重要的是,无论选择 N∈N,从框架中选择第 N 个元素得到的子族本身就是一个框架。此外,在移除任意有限数量的元素后,框架属性仍然保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The mystery of Carleson frames

In 2016 Aldroubi et al. constructed the first class of frames having the form {Tkφ}k=0 for a bounded linear operator on the underlying Hilbert space. In this paper we show that a subclass of these frames has a number of additional remarkable features that have not been identified for any other frames in the literature. Most importantly, the subfamily obtained by selecting each Nth element from the frame is itself a frame, regardless of the choice of NN. Furthermore, the frame property is kept upon removal of an arbitrarily finite number of elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信