Subhabrata Mukhopadhyay, Muhammad Saad Naeem, G. Shiva Shanker, Arnab Ghatak, Alagar R. Kottaichamy, Ran Shimoni, Liat Avram, Itamar Liberman, Rotem Balilty, Raya Ifraemov, Illya Rozenberg, Menny Shalom, Núria López, Idan Hod
{"title":"局部二氧化碳储层可促进快速、选择性的电化学二氧化碳还原","authors":"Subhabrata Mukhopadhyay, Muhammad Saad Naeem, G. Shiva Shanker, Arnab Ghatak, Alagar R. Kottaichamy, Ran Shimoni, Liat Avram, Itamar Liberman, Rotem Balilty, Raya Ifraemov, Illya Rozenberg, Menny Shalom, Núria López, Idan Hod","doi":"10.1038/s41467-024-47498-9","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical CO<sub>2</sub> reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO<sub>2</sub> solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO<sub>2</sub>-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO<sub>2</sub>-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm<sup>2</sup> (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO<sub>2</sub> reduction reaction, leading it closer to the requirements for practical implementation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"206 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction\",\"authors\":\"Subhabrata Mukhopadhyay, Muhammad Saad Naeem, G. Shiva Shanker, Arnab Ghatak, Alagar R. Kottaichamy, Ran Shimoni, Liat Avram, Itamar Liberman, Rotem Balilty, Raya Ifraemov, Illya Rozenberg, Menny Shalom, Núria López, Idan Hod\",\"doi\":\"10.1038/s41467-024-47498-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical CO<sub>2</sub> reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO<sub>2</sub> solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO<sub>2</sub>-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO<sub>2</sub>-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm<sup>2</sup> (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO<sub>2</sub> reduction reaction, leading it closer to the requirements for practical implementation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-47498-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-47498-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
水基电解质中的电化学二氧化碳还原反应是生产高附加值化学品和减少碳排放的一条可行途径。然而,即使在气体扩散电极装置中,二氧化碳的低水溶性也限制了催化速率和选择性。在这里,我们证明了当装配在异相电催化剂上时,腈改性金属有机框架(MOF)薄膜可作为一个显著的二氧化碳溶解层,与大量电解质相比,其局部浓度增加了约 27 倍,达到 0.82 M。当在气体扩散电极中的 Bi 催化剂上安装 MOF 时,MOF 可显著提高 CO2 到 HCOOH 的转化率,选择性超过 90%,部分 HCOOH 电流达到 166 mA/cm2(在 -0.9 V 相对于 RHE 时)。MOF 还能通过稳定反应中间产物促进催化作用,这一点已通过操作红外光谱和密度泛函理论得到证实。因此,所提出的策略为增强异相电化学二氧化碳还原反应提供了新的分子手段,使其更接近实际应用的要求。
Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction
Electrochemical CO2 reduction reaction in aqueous electrolytes is a promising route to produce added-value chemicals and decrease carbon emissions. However, even in Gas-Diffusion Electrode devices, low aqueous CO2 solubility limits catalysis rate and selectivity. Here, we demonstrate that when assembled over a heterogeneous electrocatalyst, a film of nitrile-modified Metal-Organic Framework (MOF) acts as a remarkable CO2-solvation layer that increases its local concentration by ~27-fold compared to bulk electrolyte, reaching 0.82 M. When mounted on a Bi catalyst in a Gas Diffusion Electrode, the MOF drastically improves CO2-to-HCOOH conversion, reaching above 90% selectivity and partial HCOOH currents of 166 mA/cm2 (at −0.9 V vs RHE). The MOF also facilitates catalysis through stabilization of reaction intermediates, as identified by operando infrared spectroscopy and Density Functional Theory. Hence, the presented strategy provides new molecular means to enhance heterogeneous electrochemical CO2 reduction reaction, leading it closer to the requirements for practical implementation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.